

EN2210: Continuum Mechanics

Homework 3: Kinetics Due 4pm Wednesday Oct 17

1. For the Cauchy stress tensor with components

100	250	0	
250	200	0	
0	0	300	

(MPa) compute

- (a) The traction vector acting on an internal material plane with normal $\mathbf{n} = (\mathbf{e}_1 \mathbf{e}_2)/\sqrt{2}$
- (b) The principal stresses
- (c) The hydrostatic stress
- (d) The deviatoric stress tensor
- (e) The Von-Mises equivalent stress

2. The figure shows two designs for a glue joint. The glue will fail if the stress acting normal to the joint exceeds 60 MPa, or if the shear stress acting parallel to the plane of the joint exceeds 300 MPa.

- (a) Calculate the normal and shear stress acting on each joint, in terms of the applied stress σ
- (b) Hence, calculate the value of σ that will cause each joint to fail.



3. An internal surface plane that makes equal angles with each of the three principal stress directions is known as the *octahedral plane*. Show that the normal component of stress acting on this plane is $I_1 / 3$, and that the magnitude of the shear traction acting on the plane is

$$\frac{1}{3}\sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2} = \sqrt{-I_2'/3}$$

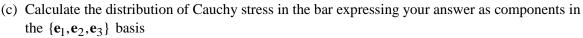
where $(\sigma_1, \sigma_2, \sigma_3)$ are the three principal stresses, and I'_2 is the second invariant of the *deviatoric* stress tensor $S_{ij} = \sigma_{ij} - \sigma_{kk} \delta_{ij} / 3$

4. In this problem we consider further the beam bending calculation discussed in HW2. Suppose that the beam is made from a material in which the Material Stress tensor is related to the Lagrange strain tensor by

$$\Sigma_{ij} = 2\mu E_{ij}$$

(this can be regarded as representing an elastic material with zero Poisson's ratio and shear modulus μ)

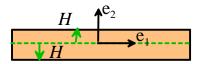
- (a) Calculate the distribution of material stress in the bar, expressing your answer as components in the {e₁, e₂, e₃} basis
- (b) Calculate the distribution of nominal stress in the bar expressing your answer as components in the {e₁, e₂, e₃} basis

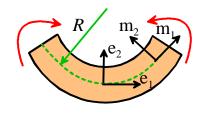


- (d) Repeat (a)-(c) but express the stresses as components in the $\{\mathbf{m}_1, \mathbf{m}_2, \mathbf{m}_3\}$ basis
- (e) Calculate the distribution of traction on a surface in the beam that has normal \mathbf{e}_1 in the undeformed beam. Give expressions for the tractions in both $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ and $\{\mathbf{m}_1, \mathbf{m}_2, \mathbf{m}_3\}$
- (f) Show that the surfaces of the beam that have positions $x_2 = \pm h/2$ in the undeformed beam are traction free after deformation
- (g) Calculate the resultant moment (per unit out of plane distance) acting on the ends of the beam.

5. A solid is subjected to some loading that induces a Cauchy stress $\sigma_{ij}^{(0)}$ at some point in the solid. The solid and the loading frame are then rotated together so that the entire solid (as well as the loading frame) is subjected to a rigid rotation R_{ij} . This causes the components of the Cauchy stress tensor to change to new values $\sigma_{ij}^{(1)}$. The goal of this problem is to calculate a formula relating $\sigma_{ij}^{(0)}$, $\sigma_{ij}^{(1)}$ and R_{ij} .

- (a) Let $n_i^{(0)}$ be a unit vector normal to an internal material plane in the solid before rotation. After rotation, this vector (which rotates with the solid) is $n_i^{(1)}$. Write down the formula relating $n_i^{(0)}$ and $n_i^{(1)}$
- (b) Let $T_i^{(0)}$ be the internal traction vector that acts on a material plane with normal $n_i^{(0)}$ in the solid before application of the rigid rotation. Let $T_i^{(1)}$ be the traction acting on the same material plane after rotation. Write down the formula relating $T_i^{(0)}$ and $T_i^{(1)}$
- (c) Finally, using the definition of Cauchy stress, find the relationship between $\sigma_{ij}^{(0)}$, $\sigma_{ij}^{(1)}$ and R_{ij} .





6. Repeat problem 5, but instead, calculate a relationship between the components of Nominal stress $S_{ij}^{(0)}$ and $S_{ij}^{(1)}$ before and after the rigid rotation.

7. Repeat problem 5, but instead, calculate a relationship between the components of material stress $\Sigma_{ij}^{(0)}$ and $\Sigma_{ii}^{(1)}$ before and after the rigid rotation.

8. One constitutive model for metallic glass (Anand and Su, J. Mech Phys. Solids 53 1362 (2005)) assumes that plastic flow in the glass takes place by shearing on planes that are oriented at an angle θ to the principal stress directions, calculated as follows. Let $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ be unit vectors parallel to the three principal stresses (with $\sigma_1 > \sigma_2 > \sigma_3$) and suppose that shearing takes place on a plane with normal \mathbf{m} , with shearing direction (tangent to the plane) \mathbf{s} . let $\tau = \mathbf{m} \cdot \mathbf{\sigma} \cdot \mathbf{s}$ and $p_n = -\mathbf{m} \cdot \mathbf{\sigma} \cdot \mathbf{m}$ denote the resolved shear stress and (compressive) normal stress acting on the shear plane. The constitutive model assumes that shearing in the $\{\mathbf{e}_1, \mathbf{e}_3\}$ plane occurs on the plane for which

$$f(\theta) = \tau(\theta) - \mu p(\theta)$$

is a maximum with respect to θ . Here μ is a material property known as the 'internal friction coefficient,' and θ is the angle between **s** and the **e**₁ direction. Their paper (eq 71) states that 'it is easily shown that $f(\theta)$ is a maximum for

$$\theta = \pm \left\{ \frac{\pi}{4} + \frac{\phi}{2} \right\} \qquad \phi = \tan^{-1} \mu$$

Derive this result.