
 

Dynamics and Vibrations 

MATLAB tutorial 
 

 

School of Engineering 

    Brown University 

 
This tutorial is intended to provide a crash-course on using a small subset of the features of MATLAB.  If 

you complete the whole of this tutorial, you will be able to use MATLAB to integrate equations of motion 

for dynamical systems, plot the results, and use MATLAB optimizers and solvers to make design 
decisions.    
 

You can work step-by-step through this tutorial, or if you prefer, you can brush up on topics from the list 
below. 
 

If you are working through the tutorial for the first time, you should complete sections 1-13.6.  You can 

do the other sections later, when they are needed.  If you have taken EN30, you should be familiar with 
the material in Sections 1-10: you can review these if you like, or skip directly to Section 11.   
 

1. What is MATLAB 

2. Starting MATLAB 
3. Basic MATLAB windows 

4. Simple calculations using MATLAB 

5. MATLAB help 
6. Errors associated with floating point arithmetic (and an example of a basic loop) 

7. Vectors in MATLAB 

7.1 Creating Vectors with a Loop 

7.2 Dot notation for operations on vectors 
7.3 Operations on vectors using a loop 

8. Matrices in MATLAB 

9. Plotting and graphics in MATLAB 
10. Working with M-files 

11. MATLAB Functions 

12. Organizing complex calculations as functions in an M-file 

13. Solving ordinary differential equations (ODEs) using MATLAB 
13.1 What is a differential equation? 

13.2 Solving a basic differential equation 

13.3 Solving a basic differential equation in an M-file 
13.4 Solving a differential equation with adjustable parameters 

13.5 Common errors 

13.6 Solving simultaneous differential equations 
13.7 Controlling the accuracy of solutions to differential equations 

13.8 Looking for special events in a solution 

13.9 How the ODE solver works 

13.10 Other MATLAB differential equation solvers 
14. Using MATLAB solvers and optimizers to make design decisions 

14.1 Using fzero to solve equations 

14.2 Simple unconstrained optimization problem 
14.3 Optimizing with constraints 

15. Reading and writing data to/from files 

16. Movies and animation 



1. What is MATLAB?     
 

You can think of MATLAB as a sort of graphing calculator on steroids – it is designed to help you 

manipulate very large sets of numbers quickly and with minimal programming.   MATLAB is particularly 
good at doing matrix operations (this is the origin of its name).   It is also capable of doing symbolic 

computations (see the mupad tutorial for details). 
 

2. Starting MATLAB 
 

MATLAB is installed on the engineering instructional facility.  You can find it in the Start>Programs 
menu. You can also install MATLAB on your own computer.  This is a somewhat involved process – you 

need to first register your name at mathworks, then wait until they create an account for you there, then 

download MATLAB and activate it.   Detailed instructions can be found at 

https://wiki.brown.edu/confluence/display/CISDOC/Matlab+Designated+Computer+Installation  
The instructions tell you to wait for an email from mathworks, but they don’t always send one.  Check 

your account a day or two after you register – if the download button for MATLAB appears you are all 

set.  If you have previously registered, you can download upgraded versions of MATLAB whenever you 
like.  The latest release is 2012b, and it is worth downloading if you are using an older version. 
 

3. Basic MATLAB windows 
 

Install and start MATLAB. You should see the GUI shown below.  The various windows may be 
positioned differently on your version of MATLAB – they are ‘drag and drop’ windows.  You may also 

see a slightly different looking GUI if you are using an older version of MATLAB. 

Select the directory where
you will load or save files here

Enter basic MATLAB

commands here

Stores a history

of your commands

Lists available 

files

Gives details of
functions in your file

 
 

https://wiki.brown.edu/confluence/display/CISDOC/Matlab+Designated+Computer+Installation


Select a convenient directory where you will be able to save your files. 

 
 

4. Simple calculations using MATLAB 
 

You can use MATLAB as a calculator.   Try this for yourself, by typing the following into the command 

window.   Press ‘enter’ at the end of each line. 

>>x=4 
>>y=x^2 

>>z=factorial(y) 

>>w=log(z)*1.e-05 

>> format long 
>>w 

>> format long eng 

>>w 
>> format short 

>>w 

>>sin(pi) 
 

MATLAB will display the solution to each step of the calculation just below the command. Do you notice 

anything strange about the solution given to the last step? 

 
Once you have assigned a value to a variable, MATLAB remembers it forever.  To remove a value from a 

variable you can use the ‘clear’ statement - try 

>>clear a 
>>a 

 

If you type  ‘clear’  and omit the variable, then everything gets cleared.  Don’t do that now – but it is 
useful when you want to start a fresh calculation. 

 

MATLAB can handle complex numbers.  Try the following 

>>z = x + i*y 
>>real(z) 

>>imag(z) 

>>conj(z) 
>>angle(z) 

>>abs(z) 

 

You can even do things like 
>> log(z) 

>> sqrt(-1) 

>> log(-1) 
 

 

Notice that: 

 Unlike MAPLE, Java, or C, you don’t need to type a semicolon at the end of the line (To properly 

express your feelings about this, type >>load handel and then >> sound(y,Fs) in the command 

window). 

 If you do put a semicolon, the operation will be completed but MATLAB will not print the result.  

This can be useful when you want to do a sequence of calculations. 



 Special numbers, like `pi’ and ‘i’ don’t need to be capitalized. But beware – you often use i as a 

counter in loops – and then the complex number i gets re-assigned as a number.   You can also do 

dumb things like pi=3.2 (You may know that in 1897 a bill was submitted to the Indiana 
legislature to declare pi=3.2 but fortunately the bill did not pass).  You can reset these special 

variables to their proper definitions by using clear i or clear pi 

 The Command History window keeps track of everything you have typed.  You can double left 

click on a line in the Command history window to repeat it, or right click it to see a list of other 

options. 

 Compared with MAPLE, the output in the command window looks like crap.   MATLAB is not 

really supposed to be used like this.  We will discuss a better approach later. 

 If you screw up early on in a sequence of calculations, there is no quick way to fix your error, 

other than to type in the sequence of commands again.  You can use the ‘up arrow’ key to scroll 

back through a sequence of commands.   Again, there is a better way to use MATLAB that gets 
around this problem. 

 If you are really embarrassed by what you typed, you can right click the command window and 

delete everything (but this will not reset variables).   You can also delete lines from the Command 

history, by right clicking the line and selecting Delete Selection.  Or you can delete the entire 
Command History. 

 You can get help on MATLAB functions by highlighting the function, then right clicking the line 

and selecting Help on Selection.  Try this for the sqrt(-1) line. 

 

 
 

5. MATLAB help 
 
Help is available through the online manual – Click on the question-mark in the strip near the top right of 

the window).   

 

 
 

 

By default the help window opens inside the 

MATLAB GUI, but you can drag it out so it 
occupies a new window on your desktop.  
 

If you already know the name of the MATLAB 

function you want to use the help manual is quite 
good – you can just enter the name of the function 

in the search, and a page with a good number of 

examples usually comes up.  It is more 
challenging to find out how to do something, but 

most of the functions you need can be found by 

clicking on the MATLAB link on the main page 

and then following the menus that come up on 
subsequent pages. 

 

 



6. Errors associated with floating point arithmetic (and a basic loop) 
 

 

If you have not already done so, use MATLAB to calculate 

>>sin(pi) 
 

The answer, of course, should be zero, but MATLAB returns a small, but finite, number.   This is because 

MATLAB (and any other program) stores floating point numbers as sequences of binary digits with a 

finite length.  Obviously, it is impossible to store the exact value of   in this way. 

 

More surprisingly, perhaps, it is not possible even to store a simple decimal number like 0.1 as a finite 
number of binary digits.   Try typing the following simple MATLAB program into the command window 

>> a = 0; 

>> for n =1:10   a = a + 0.1;  end 

>> a 
>> a – 1 

Here, the line that reads “for n=1:10 a= a + 0.1; end” is called a “loop.”  This is a very common operation 

in most computer programs.  It can be interpreted as the command: “for each of the discrete values of the 
integer variable n between 1 and 10 (inclusive), calculate the variable “a” by adding +0.1 to the previous 

value of “a”   The loop starts with the value n=1 and ends with n=10.   Loops can be used to repeat 

calculations many times – we will see lots more examples in later parts of the tutorial. 
 

Thus, the for… end loop therefore adds 0.1 to the variable a ten times.   It gives an answer that is 

approximately 1.  But when you compute a-1, you don’t end up with zero. 

 
Of course -1.1102e-016 is not a big error compared to 1, and this kind of accuracy is good enough for 

government work.   But if someone subtracted 1.1102e-016 from your bank account every time a 

financial transaction occurred around the world, you would burn up your bank account pretty fast.  
Perhaps even faster than you do by paying your tuition bills.   

 

You can minimize errors caused by floating point arithmetic by careful programming, but you can’t 

eliminate them altogether.   As a user of MATLAB they are mostly out of your control, but you need to  
know that they exist, and try to check the accuracy of your computations as carefully as possible. 

 

7. Vectors in MATLAB 
 

MATLAB can do all vector operations completely painlessly.  Try the following commands 

>> a = [6,3,4] 
>> a(1) 

>> a(2) 

>> a(3) 
>> b = [3,1,-6] 

>> c = a + b 

>> c = dot(a,b) 
>> c = cross(a,b) 

 

Calculate the magnitude of c (you should be able to do this with a dot product.  MATLAB also has a 

built-in function called `norm’ that calculates the magnitude of a vector) 
 

A vector in MATLAB need not be three dimensional.   For example, try 



>>a = [9,8,7,6,5,4,3,2,1] 

>>b = [1,2,3,4,5,6,7,8,9] 
 

You can add, subtract, and evaluate the dot product of vectors that are not 3D, but you can’t take a cross 

product.  Try the following 

>> a + b 
>> dot(a,b) 

>>cross(a,b) 

 
In MATLAB, vectors can be stored as either a row of numbers, or a column of numbers.  So you could 

also enter the vector a as 

>>a = [9;8;7;6;5;4;3;2;1] 
to produce a column vector. 

 

You can turn a row vector into a column vector, and vice-versa by 

>> b = transpose(b) 
 

7.1 Creating vectors with a loop 

 
You can create a vector containing regularly spaced data points very quickly with a loop. Try 

>> for   i=1:11    

     v(i)=0.1*(i-1); 
     end 

>> v 

The for…end loop repeats the calculation with each value of i from 1 to 11. Here, the “counter” 

variable i now is used to refer to the i
th

 entry in the vector v, and also is used in the formula itself.  
 

As another example, suppose you want to create a vector v of 101 equally spaced points, starting at 3 and 

ending at 2*pi, you would use 
 >> for   i=1:101  

      v(i)= 3 + (2*pi-3)*(i-1)/100;    

      end 

>> v 
 

7.2 Dot notation for operations on vectors 

 
You can often manipulate the numbers in a vector using simple MATLAB commands.   For example, if 

you type 

>> sin(v) 
MATLAB will compute the sin of every number stored in the vector v and return the result as another 

vector.  This is useful for plots – see section 11. 

 

You have to be careful to distinguish between operations on a vector (or matrix, see later) and operations 
on the components of the vector.  For example, try typing 

>> v^2 

This will cause MATLAB to bomb, because the square of a row vector is not defined.   But you can type 
>> v.^2 

(there is a period after the v, and no space).  This squares every element within v.   

 
You can also do things like 

             >> v. /(1+v) 



(see if you can work out what this does).    

 

7.3 Operations on vectors using a loop 
 

I personally avoid using the dot notation – mostly because it makes code hard to read.  Instead, I generally 

do operations on vector elements using loops.  For example, instead of writing w = v.^2, I would use  
>> for i=1:length(v)  

     w(i) = v(i)^2;  

     end 
>> w 

Here, ‘for i=1:length(v)’  repeats the calculation for every element in the vector v.  The function 

length(vector) determines how many components the vector v has (101 in this case).   
 

Using loops is not elegant programming, and slows down MATLAB. Purists (like CS40 TAs) object to it. 

But I don’t care.  For any seriously computationally intensive calculations I would use a programming 

language like C or Fortran95, not MATLAB.  Programming languages like Java, C++, or Python are 
better if you need to work with complicated data structures. 

 

 

8. Matrices in MATLAB 
 

Hopefully you know what a matrix is…    If not, it doesn’t matter - for now, it is enough to know that a 
matrix is a set of numbers, arranged in rows and columns, as shown below 

1 5 0 2

5 4 6 6

3 3 0 5

9 2 8 7

 
 
 
 
 
 

row 1

Column 2

row 4

Column 3
 

 

A matrix need not necessarily have the same numbers of rows as columns, but most of the matrices we 
will encounter in this course do.   A matrix of this kind is called square.  (My generation used to call our 

professors and parents square too, but with hindsight it is hard to see why. ‘Lumpy’ would have been 

more accurate). 

 
You can create a matrix in MATLAB by entering the numbers one row at a time, separated by 

semicolons, as follows 

>> A = [1,5,0,2; 5,4,6,6;3,3,0,5;9,2,8,7] 
 

You can extract the numbers from the matrix using the convention A(row #, col #).  Try  

>>A(1,3) 

>>A(3,1) 
 

You can also assign values of individual array elements 

>>A(1,3)=1000 



There are some short-cuts for creating special matrices.  Try the following 

>>B = ones(1,4) 
>>C = pascal(6) 

>>D = eye(4,4) 

>>E = zeros(3,3) 

 
The ‘eye’ command creates the ‘identity matrix’ – this is the matrix version of the number 1.  You can 

use 

>> help pascal 
to find out what pascal does. 

 

MATLAB can help you do all sorts of things to matrices, if you are the sort of person that enjoys doing 
things to matrices.  For example 

1. You can flip rows and columns with  >> B = transpose(A) 

2. You can add matrices (provided they have the same number of rows and columns >> C=A+B  

Try also >> C – transpose(C) 
A matrix that is equal to its transpose is called symmetric 

3. You can multiply matrices – this is a rather complicated operation, which will be discussed in 

more detail elsewhere.  But in MATLAB you need only to type >>D=A*B   to find the product of 
A and B.   Also try the following 

>> E=A*B-B*A 

>>  F = eye(4,4)*A - A 
4. You can do titillating things like calculate the determinant of a matrix; the inverse of a matrix, the 

eigenvalues and eigenvectors of a matrix.  If you want to try these things 

>> det(A) 

>> inv(A) 
>> eig(A) 

>> [W,D] = eig(A)   

You can find out more about these functions, and also get a full list of MATLAB matrix 
operations in Linear Algebra page of the help menu. 

 



 

MATLAB can also calculate the product of a matrix and a vector.   This operation is used very frequently 
in engineering calculations.  For example, you can multiply a 3D column vector by a matrix with 3 rows 

and 3 columns, as follows 

>>v = [4;3;6] 

>>A = [3,1,9;2,10,4;6,8,2] 
>>w=A*v 

The result is a 3D column vector.  Notice that you can’t multiply a 3D row vector by a 3x3 matrix.  Try 

this 
>>v = [4,3,6] 

>>w=A*v 

 
If you accidentally enter a vector as a row, you can convert it into a column vector by using 

>>v = transpose(v) 

 

MATLAB is also very good at solving systems of linear equations.  For example, consider the equations 

1 2 3

1 2 3

1 2 3

3 4 7 6

5 2 9 1

13 3 8

x x x

x x x

x x x

  

  

   

 

This system of equations can be expressed in matrix form as  

1

2

3

3 4 7 6

5 2 9 1

1 13 3 8

x

x

x



    
    

   
    
        

Ax b

A x b
 

To solve these in MATLAB, you would simply type 

>> A = [3,4,7;5,2,-9;-1,13,3] 

>> b = [6;1;8] 
>> x = A\b  

(note the forward-slash, not the back-slash or divide sign) You can check your answer by calculating 

>> A*x 
 

The notation here is supposed to tell you that x is b ‘divided’ by A – although `division’ by a matrix has 

to be interpreted rather carefully.  Try also 

>>x=transpose(b)/A 

The notation transpose(b)/A solves the equations xA b , where x and b are row vectors.  Again, you can 

check this with 
>>x*A  

(The answer should equal b, (as a row vector) of course) 

 
MATLAB can quickly solve huge systems of equations, which makes it useful for many engineering 

calculations.  The feature has to be used carefully because systems of equations may not have a solution, 

or may have many solutions – MATLAB has procedures for dealing with both these situations but if you 

don’t know what it’s doing you can get yourself into trouble.  For more info on linear equations check the 
section of the manual below 



 
 

 

 

9. Plotting and graphics in MATLAB This is an important section of this tutorial 
 

Plotting data in MATLAB is very simple.  Try the following 

>> for i=1:101  x(i)=2*pi*(i-1)/100; end 
>> y = sin(x)  

>> plot(x,y) 

 
MATLAB should produce something that looks 

like this 

 
 

MATLAB lets you edit and annotate a graph 

directly from the window.   For example, you 

can go to Tools> Edit Plot, then double-click 
the plot.  A menu should open up that will allow 

you to add x and y axis labels, change the range 

of the x-y axes; add a title to the plot, and so on.   
 

You can change axis label fonts, the line 

thickness and color, the background, and so on 

– usually by double-clicking what you want to change and then using the pop-up editor.  You can export 
figures in many different formats from the File> Save As  menu – and you can also print your plot 

directly.  Play with the figure for yourself to see what you can do. 

 



Helpful Hint: If you annotate a plot by hand, you 

can make MATLAB generate the code to re-create 
your annotated plot automatically by going to File> 

Generate Code.  This is useful when you write your 

own scripts and want to label plots automatically. 

 
To plot multiple lines on the same plot you can use 

>> y = sin(x) 

>> plot(x,y) 
>> hold on 

>> y = sin(2*x) 

>> plot(x,y) 
Alternatively, you can use 

>> y(1,:) = sin(x); 

>> y(2,:) = sin(2*x); 

>> y(3,:) = sin(3*x); 
>> plot(x,y) 

Here, y is a matrix.  The notation y(1,:) fills the first row of y, y(2,:) fills the second, and so on.  The 

colon : ensures that the number of columns is equal to the number of terms in the vector x. If you prefer, 
you could accomplish the same calculation in a loop:  

>> for i=1:length(x) y(1,i) = sin(x(i));  y(2,i) = sin(2*x(i)); y(3,i) = sin(3*x(i)); end 

>> plot(x,y)  
 

Notice that when you make a new plot, it always wipes out the old one.   If you want to create a new plot 

without over-writing old ones, you can use 

>> figure 
>> plot(x,y) 

 

The ‘figure’ command will open a new window and will assign a new number to it (in this case, figure 2).  
If you want to go back and re-plot an earlier figure you can use 

>> figure(1) 

>> plot(x,y) 

 
If you like, you can display multiple plots in the same figure, by typing 

>> newaxes = axes; 

>> plot(x,y) 
The new plot appears over the top of the old one, but you can drag it away by clicking on the arrow tool 

and then clicking on any axis or border of new plot.  You can also re-size the plots in the figure window 

to display them side by side.  The statement ‘newaxes = axes’ gives a name (or ‘handle’) to the new axes, 
so you can select them again later.  For example, if you were to create a third set of axes 

>> yetmoreaxes = axes; 

>> plot(x,y) 

you can then go back and re-plot `newaxes’ by typing 
>> axes(newaxes); 

>> plot(x,y) 

 
Doing parametric plots is easy.  For example, try 

>> for i=1:101 t(i) = 2*pi*(i-1)/100; end 

>> x = sin(t); 
>> y = cos(t); 

>> plot(x,y) 



 

MATLAB has vast numbers of different 2D and 3D plots.   For example, to draw a filled contour plot of 

the function sin(2 )sin(2 )z x y   for 0 1, 0 1x y    , you can use 

>> for i =1:51 x(i) = (i-1)/50; y(i)=x(i); end  

>> z = transpose(sin(2*pi*y))*sin(2*pi*x); 
>> figure 

>> contourf(x,y,z) 

The first two lines of this sequence should be familiar: they create row vectors of equally spaced points. 

The third needs some explanation – this operation constructs a matrix z, whose rows and columns satisfy  
z(i,j) = sin(2*pi*y(i)) * sin(2*pi*x(j)) for each value of x(i) and y(j). 

If you like, you can change the number of contour levels 

>>contourf(x,y,z,15) 
 

You can also plot this data as a 3D surface using 

>> surface(x,y,z) 
 

The result will look a bit strange, but you can click on the ‘rotation 3D’ button (the little box with a 

circular arrow around it ) near the top of the figure window, and then rotate the view in the figure with 

your mouse to make it look more sensible.  
 

You can find out more about the different kinds of MATLAB plots in the section of the manual shown 

below 

 
 



10. Working with M files  
 

So far, we’ve run MATLAB by typing into the command window.   This is OK for simple calculations, 

but it is usually better to type the list of commands you plan to execute into a file (called an M-file), and 
then tell MATLAB to run all the commands together.   One benefit of doing this is that you can fix errors 

easily by editing and re-evaluating the file.  But more importantly, you can use M-files to write simple 

programs and functions using MATLAB. 

 
To create an M-file, simply press the ‘New Script’ button on the main MATLAB window. 

 
 
This will open a new window for the matlab script editor, as shown below 
 

 
 

Now, type the following lines into the editor (see the screenshot): 
for i=1:101 

 theta(i) = -pi + 2*pi*(i-1)/100; 

 rho(i) = 2*sin(5*theta(i)); 

end   

figure 

polar(theta,rho) 

 

You can make MATLAB execute these statements by: 
1. Pressing the green arrow labeled ‘Run’ near the top of the editor window – this will first save the 

file (MATLAB will prompt you for a file name – save the script in a file called myscript.m), and 

will then execute the file.  



2. You can save the file yourself (e.g. in a file called myscript.m).   You can then run the script from 

the command window, by typing  
>> myscript 

 

You don’t have to use the MATLAB editor to create M-files – any text editor will work.  As long as you 

save the file in plain text (ascii) format in a file with a .m extension, MATLAB will be able to find and 
execute the file.  To do this, you must open the directory containing the file with MATLAB (e.g. by 

entering the path in the field at the top of the window). Then, typing 

>> filename 
in the command window will execute the file.  Usually it’s more convenient to use the MATLAB editor - 

but if you happen to be stuck somewhere without access to MATLAB this is a useful alternative.  (Then 

again, this means you can’t use lack of access to MATLAB to avoid doing homework, so maybe there is a 
down-side) 

 

11. MATLAB functions  This is an important section of this tutorial 
 

You can also use M-files to define new MATLAB functions – these are programs that can accept user-

defined data and use it to produce a new result.  For example, to create a function that computes the 
magnitude of a vector: 

1. Open a new M-file with the editor (press the ‘New’ button on the editor) 

2. Type the following into the M-file 
function y = magnitude(v) 
% Function to compute the magnitude of a vector 
y = sqrt(dot(v,v)); 
end 

Note that MATLAB ignores any lines that start with a % - this is to allow you to type comments 

into your programs that will help you, or users of your programs, to understand them. 

3. Save the file (accept the default file name, which is magnitude.m) 
4. Type the following into the command window 

>> x =  [1,2,3]; 

>> magnitude(x) 

 
Note the syntax for defining a function – it must always have the form 

  function solution_variable = function_name(input_variables…) 

 
…script that computes the function, ending with the command: 

 

                     solution_variable = …. 
               end 

 

You can visualize the way a function works 

using the picture.   Think of the ‘input 
variables’ as grass (the stuff cows eat, that is, 

not the other kind of grass); the body of the 

script as the cow’s many stomachs, and the 
solution variable as what comes out of the 

other end of the cow.   

 

A cow can eat many different vegetables, and you can put what comes out of the cow in many different 
containers.   A function is the same: you can pass different variables or numbers into a function, and you 

j

Solution

variable(s)
Input

variable(s)

Computations

inside function



can assign the output to any variable you like – try >> result1 = magnitude([3,4])   or  >> result2 = 

magnitude([2,4,6,8])  for example. 
 

If you are writing functions for other people to use, it is a good idea to provide some help for the function, 

and some error checking to stop users doing stupid things.  MATLAB treats the comment lines that 

appear just under the function name in a function as help, so if you type 
>> help magnitude 

into the command window, MATLAB will tell you what `magnitude’ does.   You could also edit the 

program a bit to make sure that v is a vector, as follows 
 

function y = magnitude(v) 
% Function to compute the magnitude of a vector 

  
% Check that v is a vector   
[m,n] = size(v);   % [m,n] are the number of rows and columns of v 
% The next line checks if both m and n are >1, in which case v is 

% a matrix, or if both m=1 and n=1, in which case v scalar; if either, 
% an error is returned 
if ( ( (m > 1) & (n > 1)  ) | (m == 1 & n == 1) ) 
    error('Input must be a vector') 
end 
y = sqrt(dot(v,v)); 
end 

 

This program shows another important programming concept.  The “if……end” set of commands is 
called a “conditional” statement.  You use it like this: 

     if (a test)  

           calculation to do if the test is true 
   end  

In this case the calculation is only done if test is true – otherwise the calculation is skipped altogether. 

You can also do 

     if (a test)  

           calculation to do if the test is true 

   else if (a second test) 

           calculation to do if the first test is false and the second test is true 
   else 

              calculation to do if both tests are false 
   end  

In the example (m > 1) & (n > 1) means “m>1 and n>1” while | (m == 1 & n == 1) means 

“or m=1 and n=1”.  The symbols & and | are shorthand for `and’ and ‘or’. 
 

Functions can accept or return data as numbers, arrays, strings, or even more abstract data types.  For 

example, the program below is used by many engineers as a substitute for social skills 
function s = pickup(person) 
% function to say hello to someone cute 

      s = ['Hello ' person ' you are cute'] 
 

beep; 
end 

 



(If you try to cut and paste this function into MATLAB the quotation marks will probably come out 

wrong in the Matlab file and the function won’t work.  The quotes are all ‘close single quote’ on your 
keyboard – you will need to correct them by hand.) 

 

You can try this out with 

>> pickup(‘Janet’) 
(Janet happens to be my wife’s name.   If you are also called Janet please don’t attach any significance to 

this example) 

 
You can also pass functions into other functions.   For example, create an M-file with this program 

function plotit(func_to_plot,xmin,xmax,npoints) 
% plot a graph of a function of a single variable f(x) 
% from xmin to xmax, with npoints data points 
for n=1:npoints 
    x(n) = xmin + (xmax-xmin)*(n-1)/(npoints-1); 
    v(n) = func_to_plot(x(n)); 
end 
figure; 
plot(x,v);  

end 

Then save the M-file, and try plotting a cosine, by using 

>> plotit(@cos,0,4*pi,100) 
 

Several new concepts have been introduced here – firstly, notice that variables (like func_to_plot in this 

example) don’t necessarily have to contain numbers, or even strings. They can be more complicated 

things called “objects.”  We won’t discuss objects and object oriented programming here, but the example 
shows that a variable can contain a function. To see this, try the following 

    >> v = @exp 

    >> v(1) 
This assigns the exponential function to a variable called v – which then behaves just like the exponential 

function.  The ‘@’ before the exp is called a ‘function handle’ – it tells MATLAB that the function 

exp(x), should be assigned to v, instead of just a variable called exp.  
 

The ‘@’ in front of cos  “plotit(@cos,0,4*pi,100)”  assigns the cosine function to the variable called 

func_to_plot  inside the function. 

 

Although MATLAB is not really intended to be a programming language, you can use it to write some 

quite complicated code, and it is widely used by engineers for this purpose. CS4 will give you a good 
introduction to MATLAB programming.  But if you want to write a real program you should use a 

genuine programming language, like C, C++, Java, lisp, etc.   

 
IMPORTANT:  You may have got used to writing scripts in EN30 without defining them as functions. 

For the calculations you will be doing in EN40, it will be essential to make all your scripts define a 

function.   This means you must start the script with ‘function name of function’ and terminate it with an 

‘end’ statement.  An example is shown below. 
 

function  My_Design_Project 
%UNTITLED3 Summary of this function goes here 
%   Detailed explanation goes here 

  

  
end 



 

If you like, you can automatically create a new function by using the New>Function menu, (You will 
usually be able to delete the input and output arguments for the function).  

 

 

12. Organizing complicated calculations as functions in an M file 
 
It can be very helpful to divide a long and complicated calculation into a sequence of smaller ones, which 

are done by separate functions in an M file.   As a very simple example, the M file shown below creates 

plots a pseudo-random function of time, then computes the root-mean-square of the signal.  Copy and 
paste the example into a new MATLAB M-file, and press the green arrow to see what it does. 

 
function randomsignal 

 % Function to plot a random signal and compute its RMS. 

 

close all % This closes any open figure windows 

 

 

npoints = 100; % No. points in the plot 

dtime = 0.01;  % Time interval between points 

 

% Compute vectors of time and the value of the function. 

% This example shows how a function can calculate several 

% things at the same time. 

[time,function_value] = create_random_function(npoints,dtime); 

 

% Compute the rms value of the function 

rms = compute_rms(time,function_value); 

 

% Plot the function  

plot(time,function_value); 

% Write the rms value as a label on the plot 

label = strcat('rms signal = ',num2str(rms)); 

annotation('textbox','String',{label},'FontSize',16,... 

    'BackgroundColor',[1 1 1],... 

    'Position',[0.3499 0.6924 0.3944 0.1]); 

  

end 

% 

function [t,y] = create_random_function(npoints,time_interval) 

% Create a vector of equally spaced times t(i), and 

% a vector y(i), of random values with i=1…npoints 

  for i = 1:npoints 

    t(i) = time_interval*(i-1); 

% The rand function computes a random number between 0 and 1 

    y(i) = rand-0.5;  

  end 

  

end 

  

function r = compute_rms(t,y) 



%  Function to compute the rms value of a function y of time t. 

%  t and y must both be vectors of the same length. 

   for i = 1:length(y) %You could avoid this loop with . notation 

      ysquared(i) = y(i)*y(i);  

   end 

%  The trapz function uses a trapezoidal integration 

%  method to compute the integral of a function. 

   integral = trapz(t,ysquared); 

    

   r = sqrt(integral/t(length(t))); %  This is the rms. 

  

end 

Some remarks on this example: 

1. Note that the m-file is organized as  
        main function – this does the whole calculation 

                      result 1 = function1(data) 

                      result2 = function2(data) 

        end of main function 
       Definition of function 1 

       Definition of function2 

 
When you press the green arrow to execute the M file, MATLAB will execute all the statements 

that appear in the main function.   The statements in function1 and function2 will only be 

executed if the function is used inside the main function; otherwise they just sit there waiting 
to be asked to do something.  I remember doing much the same thing at high-school dances. 

 

2. When functions follow each other in sequence, as shown in this example, then variables defined 

in one function are invisible to all the other functions.   For example, the variable ‘integral’ only 
has a value inside the function compute_rms.  It does not have a value in  

create_random_function. 

 

 

13. Solving differential equations with MATLAB 
 

The main application of MATLAB in EN40 is to analyze motion of an engineering system.  To do this, 
you always need to solve a differential equation.  MATLAB has powerful numerical methods to solve 

differential equations.  They are best illustrated by means of examples.    

 
Before you work through this section it is very important that you are comfortable with the way a 

MATLAB function works.    Remember, a MATLAB function takes some input variables, uses them to 

do some calculations, and then returns some output variables. 

 

13.1 What is a differential equation? 

 

Differential equations are mathematical models used by engineers, physicists, mathematical biologists, 
and even economists.  For example, crude economic models say that the rate of growth of the GDP g of a 

country is proportional to its GDP, giving the differential equation 

( )
dg

kg t
dt

  



This is an equation for the unknown function g(t).  Basically, it says that if g is small, it increases slowly; 

if g is large, it increases quickly.  If you know the value of g at time t=0 (eg 0(0)g g ), the equation can 

be solved to see that 0( ) exp( )g t g kt  (you should know how to do this – separate variables and 

integrate). 

 
Thus 

 A differential equation is an algebraic equation for an unknown function of a single variable (e.g. 

g(t).  The equation involves derivatives of the function with respect to its argument.  

 To solve a differential equation, you need to know initial conditions or boundary conditions that 
specify the value of the function (and/or its time derivatives) at some known instant. 

 

There are many different kinds of differential equation – your math courses will discuss them in more 
detail. In this course, we will usually want to solve differential equations that describe the motion of some 

mechanical system.  We will often need to solve for more than one variable at the same time.  For 

example, the x,y,z coordinates of a satellite orbiting a planet satisfy the equations 

     

2 2 2

2 3/2 2 3/2 2 3/2
2 2 2 2 2 2 2 2 2

d x kx d y ky d z kz

dt dt dtx y z x y z x y z

     

     

 

where k is a constant.   We will see many other examples.   All the differential equations we solve will 

come from Newtons law F=ma (or rotational equations for rigid bodies), and so are generally second 

order differential equations (they contain the second derivative of position with respect to time).    

 

 

13.2 Solving a basic differential equation using the command window.   

 

Suppose we want to solve the following equation for the unknown function y(t) (where t is time) 

10 sin( )
dy

y t
dt

    

with initial conditions 0y   at time t=0.   We are interested in calculating y as a function of time – say 

from time t=0  to t=20.  We won’t actually compute a formula for y – instead, we calculate the value of y 

at a series of different times in this interval, and then plot the result. 

 
We would do this as follows 

1. Create a function (in an m-file) that calculates 
dy

dt
, given values of y and t.  Create an m-file as 

follows, and save it in a file called ‘simple_ode.m’ 
function dydt = simple_ode(t,y) 
% Example of a MATLAB differential equation function 

  
   dydt = -10*y + sin(t); 
end 

 

It’s important to understand what this function is doing.   Remember, (t,y) are the ‘input 
variables’ to the function.   ‘dydt’ is the ‘output variable’.    So, if you type value = 

simple_ode(some value of t, some value of y ) the function will compute the value of dydt for the 

corresponding (t,y), and put the answer in a variable called ‘value’.   To explore what the function 
does, try typing the following into the MATLAB command window. 

             >> simple_ode(0,0) 

            >>  simple_ode(0,1) 



            >>  simple_ode(pi/2,0) 

For these three examples, the function returns the value of /dy dt  for (t=0,y=0); (t=0,y=1) and 

(t=pi,y=0), respectively.   Do the calculation in your head to check that the function is working. 

 

2. Now, you can tell MATLAB to solve the differential equation for y and plot the solution.  To do 
this, type the following commands into the MATLAB command window. 

 

>> [t_values,y_values] = ode45(@simple_ode,[0,20],0); 

>> plot(t_values,y_values) 
Here,  

ode45(@function name,[start time, end time], initial value of variable y) 

is a special MATLAB function that will integrate the differential equation (numerically). Note that a 
`function handle’ (the @) has to be used to tell MATLAB the name of the function to be integrated. 

 

Your graph should look like the plot shown on the 
right. 

 

Easy?  Absolutely!   But there is a great deal of 

sophisticated math and programming hidden in the 
built-in numerical functions of MATLAB. 

 

 
 

 

 

 
 

 

 
Let’s look a bit more carefully at how the ODE solver works.  Think about the command 

>> [t_values,y_values] = ode45(@simple_ode,[0,20],0); 

 
This is calling an internal MATLAB function called ‘ode45’.  Like all functions, ode45 takes some input 

variables, digests them, and produces some output variables.  Here, the input variables are  

1. The name of the function that computes the time derivative (simple_ode).   It must be preceded 

by an @ to tell MATLAB that this variable is a function.    
You must always write this function yourself, and it must always have the form 

function dydt = name_of_function(t,y) 
% MATLAB differential equation function 
%   Do some calculations here to compute the value of dydt 
   dydt = … 
end 

2. The time interval for which you would like to calculate y, specified as [start time, end time]. 

3. The value of y at start time. 
 

Now let’s look at the ‘output variables’ from ode45.   The output variables are two vectors called 

t_values, y_values.  (Of course you can give these different names if you like). To see what’s in the 
vectors, type 

>> t_values 

>> y_values 



The vector ‘t_values’ contains a set of time values.   The vector ‘y_values’ contains the value of ‘y’ at 

each of these times. 

1 1

2 2

3 3

4 4

( )

( )

_ _ ( )

( )

t y t

t y t

t values y valuest y t

t y t

   
   
   
    
   
   
      

 

So when we typed plot(t_values,y_values) we got a graph of y as a function of t (look back at how 

MATLAB plots work – Section 9 - if you need to). 

 

It’s important to understand that MATLAB has not actually given you a formula for y as a function of 
time.   Instead, it has given you numbers for the value of the solution y at a set of different times. 

 

HEALTH WARNING: People find the way MATLAB is using the ‘simple_ode’ function hard to 
understand – this is mostly because it is not clear just what the ‘ode45’ function is doing.   We will 

discuss this in class – for now the important thing is to work out how to use the function.  

 

 

13.3 Solving a basic differential equation in an M-file  This is an important section of this tutorial 

 

Let’s work through a second example, but this time write a MATLAB ‘m’ file to plot the solution to a 
differential equation.  This is the way we normally use MATLAB – you can solve most problems by just 

modifying the code below.   As an example, let’s solve the Bernoulli differential equation 

 41
2

6

dy
ty y

dt
   

with initial condition 2y    at time t=0.   Here’s an ‘m’ file to do this  

 
function solve_bernoulli 
% Function to solve dy/dt = (t*y^4+2y)/6 
% from time t=tstart to t=tstop, with y(0) = initial_y 

% Define parameter values below.  
    tstart = 0; 

    tstop = 20; 

    initial_y = -2; 

 
   [t_values,sol_values] = ode45(@diff_eq,[tstart,tstop],initial_y); 
  

   plot(t_values,sol_values); % Plot the solution 

 
   function dydt = diff_eq(t,y) % Function defining the ODE 
      dydt = (t*y^4+2*y)/6; 
   end % end statement terminating the diff_eq function 

  
      end % end statement terminating the solve_bernoulli function 

 

Notice how the code’s been written.   We created a function to compute the value of dy/dt given a value 
for t and y.   This is the function called ‘diff_eq’.    Notice two peculiar things: 

 The ‘diff_eq’ function comes after the line that computes the solution to the ODE (the line with 

‘ode45’ in it), but that doesn’t matter.   When MATLAB executes your ‘m’ file, it first scans 

through the file and looks for all the functions – these are then stored internally and can be 



evaluated at any time in the code.  It is common to put the functions near the end of the file so 

they can easily be found.   We will discuss the order of the statements in this file in more detail 
in the next section. 

 The diff_eq function occurs before the end statement that closes the solve_bernoulli function. 

The function is said to be nested within the solve_bernoulli function.   This is not important for 
this example, but the example in the next section will only work if the differential equation 

function is nested. 

 

The solution to the ODE is computed on the line 
[t_values,sol_values] = ode45(@diff_eq,[tstart,tstop],initial_y); 

The function handle @diff_eq is used to tell MATLAB which function to use to compute the value of 

dy/dt.    MATLAB will be repeatedly using your function internally to compute dy/dt at many different 
times between tstart and tstop, but you don’t see this happening. 

 

The main reason that this procedure hard to follow is that it’s difficult to see how MATLAB is using your 

differential equation function – this is buried inside MATLAB code that you can’t see.  We will discuss 
this in class, but if you can’t wait to find out, you can read section 13.8 and see if you can work out 

what’s going on by yourself. 

 

 

13.4 Solving a differential equation with adjustable parameters. 

 
For design purposes, we often want to solve equations which include design parameters.  For example, we 

might want to solve 

sin( )
dy

ky F t
dt

    

with different values of k, F and  , so we can explore how the system behaves.  We can do this using the 

script shown below 
function ode_to_a_nightingale 
% Function to solve dy/dt = -k*y + F*sin(omega*t) 
% from t=tstart to t=tstop, with y(0) = initial_y 

 

close all % Closes any open plot windows. 

 

% Define parameter values below.  
    k = 10; 

    F = 1; 

    omega = 1; 

    tstart = 0; 

    tstop = 20; 

    initial_y = 0; 

 
   [t_values,sol_values] = ode45(@diff_eq,[tstart,tstop],initial_y); 
  

   plot(t_values,sol_values); 

 
   function dydt = diff_eq(t,y) % Function defining the ODE 
      dydt = -k*y + F*sin(omega*t); 
   end 

  
      end % Here is the end of the ‘solve my ode’ function 



 

The function ‘diff_eq’  function is nested, the 
variables (k,F,omega,tstart,tstop), which are 

given values in the _solve_my_ode function, 

have the same values inside the diff_equation 

function.   Note that variable values are only 
shared by nested functions, not by functions that 

are defined in sequence. 

 
Now you can solve the ODE by executing the 

M-file.  You can get solutions with different 

parameter values quickly by editing the M-file. 
 

Your graph should look like the figure on the 
right. 

 

HEALTH WARNING: forgetting about the 
behavior of variables inside nested functions is 

(for me at least) one of the most common ways to screw up a MATLAB script, and one of the hardest 

bugs to find.  For example, create your first MATLAB bug like this 
function stupid 
    for i=1:10     

      vector(i) = i 

          end 

          for i=1:10 

        result(i) = double_something(vector(i)); 
    end 

     

    result 

     
    function y = double_something(x) 
        i=2*x; 
        y = i; 
    end 
end 

Run this program to see what happens.  The moron who wrote the program intended to multiply every 

element in the vector by two and store the answer in a vector of the same length called ‘result.’ This is not 

what happens, because the counter ‘i’ in the loop was modified inside the function.   If you get an error 

message from MATLAB that says that a vector has the wrong length, it is probably caused by something 
like this.  

 

13.5 Common errors  

 

The examples below show the errors you get if you get functions in the wrong order when you solve a 

differential equation.   Start with a code that works: 
function ode_to_a_nightingale 
% Function to solve dy/dt = -k*y + F*sin(omega*t) 
% from t=tstart to t=tstop, with y(0) = initial_y 

 

close all % Closes any open plot windows. 

 

% Define parameter values below.  
    k = 10; 



    F = 1; 

    omega = 1; 

    tstart = 0; 

    tstop = 20; 

    initial_y = 0; 

 
   [t_values,sol_values] = ode45(@diff_eq,[tstart,tstop],initial_y); 
  

   plot(t_values,sol_values); 

 

   function dydt = diff_eq(t,y) % Function defining the ODE 
      dydt = -k*y + F*sin(omega*t); 
   end 

  
      end 

 

Example 1: Now try moving the diff_eq function to the top: 
function ode_to_a_nightingale 
% Function to solve dy/dt = -k*y + F*sin(omega*t) 
% from t=tstart to t=tstop, with y(0) = initial_y 

 

   function dydt = diff_eq(t,y) % Function defining the ODE 
      dydt = -k*y + F*sin(omega*t); 
   end 
 

   close all % Closes any open plot windows. 

 

% Define parameter values below.  
    k = 10; 

    F = 1; 

    omega = 1; 

    tstart = 0; 

    tstop = 20; 

    initial_y = 0; 

 
   [t_values,sol_values] = ode45(@diff_eq,[tstart,tstop],initial_y); 
  

   plot(t_values,sol_values); 

      end 

 
This works just fine.   Functions can be placed anywhere you like, provided they are nested inside the 

main ODE function. 

 
Example 2: Now try moving the diff_eq function to the bottom: 

function ode_to_a_nightingale 
% Function to solve dy/dt = -k*y + F*sin(omega*t) 
% from t=tstart to t=tstop, with y(0) = initial_y 

 

close all % Closes any open plot windows. 

 

% Define parameter values below.  
    k = 10; 

    F = 1; 

    omega = 1; 

    tstart = 0; 



    tstop = 20; 

    initial_y = 0; 

 

   [t_values,sol_values] = ode45(@diff_eq,[tstart,tstop],initial_y); 
  

   plot(t_values,sol_values); 

      end 
   function dydt = diff_eq(t,y) % Function defining the ODE 
      dydt = -k*y + F*sin(omega*t); 
   end 

 

This bombs: check the command window to see the error 

Undefined function or variable "k". 

(and a whole bunch of other garbage.   Problems are always caused by the first error that comes up.   All 
the other stuff is telling you what happened before the error, but it’s comprehensible only to geeks.  That 

means if you understand it you are a geek, and you probably don’t need to read this tutorial anyway). 

 
MATLAB bombs in this example because the diff_eq function is not nested inside the 

ode_to_a_nightingale function.  The variable k (and all the other variables) has value 10 inside the 

ode_to_a_nightingale function.  Everywhere else it has no value (that’s why MATLAB says it’s 
undefined) 

 

Example 3 Now move the diff_eq function back to the right place and try moving the line that solves the 

ODE to the top of the script: 

 
function ode_to_a_nightingale 
% Function to solve dy/dt = -k*y + F*sin(omega*t) 
% from t=tstart to t=tstop, with y(0) = initial_y 

 

close all % Closes any open plot windows. 

 

[t_values,sol_values] = ode45(@diff_eq,[tstart,tstop],initial_y); 

 

% Define parameter values below.  
    k = 10; 

    F = 1; 

    omega = 1; 

    tstart = 0; 

    tstop = 20; 

    initial_y = 0; 

 

   plot(t_values,sol_values);    

 

   function dydt = diff_eq(t,y) % Function defining the ODE 
      dydt = -k*y + F*sin(omega*t); 
   end 
 

      end 

 
This bombs (check the command window to see the error).   The reason is that MATLAB executes 

statements in the following order (i) It scans your file for functions, and stores them in memory so they 

are ready to be used; (ii) it executes the statement in the main function from the top down.    So, in this 
example, MATLAB (i) stores the diff_eq function in memory; (ii) closes figure windows; (iii) attempts to 



solve the differential equation.   But it can’t do this because the variables tstart, tstop, and initial_y have 

not been given values. 
 

Example 4: Try fixing the problem by defining tstart, tstop, and initial_y properly, but leave the 

definition of k,F and omega where they are 

 
function ode_to_a_nightingale 
% Function to solve dy/dt = -k*y + F*sin(omega*t) 
% from t=tstart to t=tstop, with y(0) = initial_y 

 

close all % Closes any open plot windows. 

 

    tstart = 0; 

    tstop = 20; 

    initial_y = 0; 

 

 

[t_values,sol_values] = ode45(@diff_eq,[tstart,tstop],initial_y); 

 

% Define parameter values below.  
    k = 10; 

    F = 1; 

    omega = 1; 

 

   plot(t_values,sol_values);    

 

   function dydt = diff_eq(t,y) % Function defining the ODE 
      dydt = -k*y + F*sin(omega*t); 
   end 
 

      end 

 

Again, this bombs with a whole string of errors.   The reason is a bit more difficult to understand.  This 

time, Matlab (i) stores the diff_eq function in memory; (ii) closes figure windows; (iii) assigns values to 
tstart, tstop and initial_y; (iii) attempts to solve the differential equation.   When it solves the differential 

equation, MATLAB needs to use your diff_eq function, which has to compute a numerical value for dydt 

given values for t,y,k,and F.   But the values of k,F and omega have not yet been specified, which causes 
MATLAB to crash. 

 

 

13.6 Solving simultaneous differential equations This is an important section of this tutorial 
 

Most problems in engineering involve more complicated differential equations than those described in the 

preceding section.   Usually, we need to solve several differential equations at once.  As an example, we 
will solve a homework problem from 2012. The famous ‘Belousov-Zhabotinskii reaction is an example of 

a chemical reaction that results in cyclic variations in concentration of the reagents (you can find movies 

showing the reaction).  Reactions of this type are of interest in biology, and a number of theoretical 
models have been developed to describe them.  One example is the ‘cubic autocatalator’ reaction, which 

is described by differential equations 

2 20.6 0.1 0.1
dx dy

xy x xy y x
dt dt

       

http://books.google.com/books?id=2d-RLuD_MX8C&pg=PA54&lpg=PA54&dq=belousov+zhabotinskii&source=bl&ots=SuF3vF53O7&sig=d5yCNMN96QvxYS4njs673pB3Vgo&hl=en&ei=0-NDTqOBBoTk0QG08ZWrCQ&sa=X&oi=book_result&ct=result&resnum=10&ved=0CFwQ6AEwCTgo#v=onepage&q=belousov%
http://www.youtube.com/watch?v=IBa4kgXI4Cg


Here, x(t) and y(t) represent the concentrations of two reacting species.  The point of the equations is to 

predict how the concentrations fluctuate with time.  The two equations specify how quickly each 
concentration varies, given the concentration values.  

 

Our mission is to calculate and plot the time variation of x and y, given that at time t=0 x=y=1. 

 
To do this, we must first define a function that will calculate values for both dx/dt and dy/dt given values 

of ,x y  and time.   MATLAB can do this if we re-write the equations we are trying to solve as a vector, 

which looks like this 
 

2

2

0.6 0.1

0.1

x xy xd

ydt xy y x

   
  
     

 

This is an equation that has the general form 

( , )
d

t
dt


w

f w  

where w is a column vector  

x

y

 
  
 

w  

 
If we write a MATLAB function to compute dw/dt given w, then MATLAB will be able to solve the 

differential equation.   Here’s a script that does this. 

 
function I_love_chemical_engineering 
% Function to solve the cubic autocatalator equations 

  

    close all % Closes any open plot windows. 
    tstart = 0; 
    tstop = 100; 
    x0 = 1;   % Initial value of x 
    y0 = 1;   % Initial value of y 
    initial_w = [x0;y0]; % Initial value of the vector w 

  
   [t_values,sol_values] = ode45(@diff_eq,[tstart,tstop],initial_w); 
   plot(t_values,sol_values);    
 

   function dw_vectordt = diff_eq(t,w_vector) % Function defining the ODE 
      x = w_vector(1); % x is stored as the first element in w_vector 
      y = w_vector(2); % y is stored as the second element in w_vector 
      dxdt = 0.6-x*y^2-0.1*x; 
      dydt = x*y^2-y+0.1*x; 
      dw_vectordt = [dxdt; dydt]; % The time derivative of w_vector 
   end 
end 

  
You should see a plot that looks like the figure.  The graph 

shows the variation of x (blue line) and y (green line) with 

time.  The concentrations fluctuate about once every 10 
seconds or so (this was the point of the calculation!) 

 

Some notes on this example: 



 The general procedure is exactly the same as for solving a single differential equation. The only 

change is that now the unknown variable is a vector, the initial value of the variable is a vector, 

and the solution contains values for both x and y. 

 A common error when solving vector valued differential equations is to forget to make the 

dw_vectordt column vector.  Try this by editing your code to  
dw_vectordt = [dxdt, dydt]; 

 

This produces the error 
Error using odearguments (line 91) 

ODE_TO_A_NIGHTINGALE/DIFF_EQ must return a column vector. 

Again, this is in classical geek and incomprehensible to most of us – just remember that if you get an 
error that has something to do with column vectors it is usually a problem in your differential equation 

function. 

 

We also need to take a closer look at the way MATLAB gives you the solution.  When we solved a scalar 
equation, the solution was a vector of time values, together with a vector of solution values.  In this 

calculation, the variable ‘t_values’ still stores a bunch of time values where the solution has been 

computed.  But now MATLAB has computed a bunch of  vectors at every time.   How is the result 
stored? 

 

The answer is that the variable ‘sol_values’ is a matrix.   To see what’s in the matrix, suppose that 

solution values ,x y  were computed at a bunch of different times 1 2 3, , ...t t t .  The variables ‘time_values’ 

and ‘sol_values’ then contain a vector and a matrix that look like this 

1 1 1

2 2 2

3 3 3

4 4 4

( ) ( )

( ) ( )

_ _ ( ) ( )

( ) ( )

t x t y t

t x t y t

t values sol valuest x t y t

t x t y t

   
   
   
    
   
   
      

 

 

Each row in the matrix ‘sol’ corresponds to the solution at a particular time; each column in the matrix 

corresponds to a different component for the vector valued solution.  For example, the solution for x  at 

time times(i) can be extracted as sols(i,1), while the solution for yv  is sols(i,2). 

 
Understanding this lets us plot the solution in many different ways (try them by editing your script): 

 To plot only x  as a function of time use plot(t_values,sol_ sol_values(:,1)) 

 To plot only y  as a function of time use plot(t_values,sol_ sol_values(:,2)) 

 To plot x  on the x axis –v- y  on the y axis use 

 plot(sol_values(:,1),sol_values(:,2)) 

In each case, the ‘:’ tells MATLAB to use all the rows in the matrix for the plot. 
 

 

 

13.7 Controlling the accuracy of solutions to differential equations. 

 

It is important to remember that MATLAB is not calculating the exact solution to your differential 
equation – it is giving you an approximate solution, which has been obtained using some sophisticated 

(and buried) computational machinery.  MATLAB allows you to control the accuracy of the solution 



using three parameters, defined as follows.   Suppose that 1 2[ , ... ]ny y yy  is the solution to your ODE.  

MATLAB computes the relative error for each variable, defined as: 

( ) /Matlab correct correct
i i i ie y y y   

 (“How does MATLAB know the correct solution? And if it knows, why doesn’t it just give the correct 

solution?” I hear you cry…   Good questions.  But I am not going to answer them).  You can control the 

accuracy of the solution by telling MATLAB what relative tolerance you would like, as shown in the code 
sample below 

 

function I_love_chemical_engineering 
% Function to solve the cubic autocatalator equations 

  
    close all % Closes any open plot windows. 
    tstart = 0; 
    tstop = 100; 
    x0 = 1;   % Initial value of x 
    y0 = 1;   % Initial value of y 
    initial_w = [x0;y0]; % Initial value of the vector w 

    
    options = odeset('RelTol',0.00001); 
   [t_values,sol_values] = ode45(@diff_eq,[tstart,tstop],initial_w,options); 
   plot(t_values,sol_values);    

  
   function dw_vectordt = diff_eq(t,w_vector) % Function defining the ODE 
      x = w_vector(1); % x is stored as the first element in w 
      y = w_vector(2); % y = stored as the second element in w 
      dxdt = 0.6-x*y^2-0.1*x; 
      dydt = x*y^2-y+0.1*x; 
      dw_vectordt = [dxdt; dydt]; % The time derivative of w 
   end 

  
   end 

 
Here, the ‘odeset(‘variable name’,value,…) function is used to set values for special control variables in 

the MATLAB differential equation solver. This example sets the relative tolerance to 510 . 

 

 

13.8 Looking for special events in a solution 

 

In many calculations, you aren’t really interested in the time-history of the solution – instead, you are 
interested in learning about something special that happens to the system.  For example, in the chemistry 

example you might be interested in finding the time when the two concentrations x, y first have equal 

values.   The script below shows how to do this. 

 
function I_love_chemical_engineering 
% Function to solve the cubic autocatalator equation 

  
    close all % Closes any open plot windows. 
    tstart = 0; 
    tstop = 100; 
    x0 = 1;   % Initial value of x 
    y0 = 1;   % Initial value of y 
    initial_w = [x0;y0]; % Initial value of the vector w 



    
    options = odeset('RelTol',0.00001,'Events',@event_function); 
   [t_values,sol_values] = ode45(@diff_eq,[tstart,tstop],initial_w,options); 
   plot(t_values,sol_values);  

    
   figure 
   yminusx = sol_values(:,2)-sol_values(:,1); 
   plot(t_values,yminusx); 

  
   function dw_vectordt = diff_eq(t,w_vector) % Function defining the ODE 
      x = w_vector(1); % x is stored as the first element in w 
      y = w_vector(2); % y = stored as the second element in w 
      dxdt = 0.6-x*y^2-0.1*x; 
      dydt = x*y^2-y+0.1*x; 
      dw_vectordt = [dxdt; dydt]; % The time derivative of w 
   end 

  
   function [ev,stop,dir] = event_function(t,w_vector) 
         x = w_vector(1); % x is stored as the first element in w 
         y = w_vector(2); % y = stored as the second element in w 
         ev = y-x; % ‘Events’ are detected when eventvalue=0 
         stop = 1; % stop if event occurs 
         dir = -1; %  Detect only events with devdt<0 
   end 

 

Notice that the code now produces two figures – the first figure shows x and y as a function of time, as 

before (notice that the code stops when x=y, as required). 

 
The second plot shows the value of y-x.   Notice that y-x goes to zero, again, as expected. 

 

Here is an explanation of what’s happening in this example.  First, notice the new line 
options = odeset('RelTol',0.00001,'Events',@event_function); 

The first line tells MATLAB that you want to look for a special event, and that a function called 
‘event_function’ will be used to specify what you are interested in.   The ‘options’ variable in the call to 

ode45 passes this information to the ODE solver, so MATLAB knows where to look for your function. 

It is important to understand how MATLAB will use the function called ‘events.’  There is a line inside 
the ode45 function in MATLAB that repeatedly calls your function with different values of time t and the 

solution vector w.  For each value of t and w, your function computes values for the three variables [ev, 

stop,dir].  You must write the function so that the value of the ‘eventvalue’ goes to zero whenever the 

values of t and w reach values you are interested in. 
 

The MATLAB ODE solver then uses your function as though it were playing the ‘hot and cold’ game 

with you.   MATLAB tries lots of different values of the solution (t,w) (you never see this happening – 
the ‘event’ function is called internally from the ODE solver function).   Your function must then tell 

MATLAB whether the values of (t,w) are getting close to the ‘event’ you are interested in.  It does this by 

computing values for [ev, stop,dir].  Here’s what the variables do: 
1. The value of  ‘ev’ tells MATLAB when the event occurs.   You should write your function so that 

‘eventvalue’ goes smoothly to zero as the event you wish to detect is approached. ‘ev’ will 

always be some function of time t and the variables stored in the vector w. Here, we are simply 

interested in finding when y=x, so we set ‘eventvalue=y-x’. 
2. ‘stop’ tells MATLAB whether or not to continue the calculation if it detects the event. If you set 

‘stop=1’ it will stop; otherwise if you set ‘stop=0’ it will continue. 

http://www.boyscouttrail.com/content/game/game-417.asp


3. ‘dir’ gives you some additional control over event.  In general, the variable ‘ev’ could start 

positive, and then decrease until it reaches zero, or could start negative, and then increase until it 
reaches zero.  Sometimes you may only be interested in one of these two cases.   You can tell 

MATLAB this by assigning the correct value to the variable ‘dir’ as follows 

 If `dir=0’ MATLAB will detect an event each time ‘eventvalue=0’ 

 If ‘dir=1’ MATLAB will respond only when eventvalue=0 and is increasing 

 If ‘dir= -1’ MATLAB will respond only when eventvalue=0 and is decreasing. 

Try changing the code to dir = +1; and see what happens.  Notice that the calculation still stops when 

y=x, but now y-x is increasing when the calculation terminates. 

 

 

13.9 How the ODE solver works 

 

It is helpful to have a rough idea of how MATLAB solves a differential equation. To do this, we’ll first 
come up with a simple (but not very good) way to integrate an arbitrary differential equation.  Then we’ll 

code our own version of MATLAB’s ode45() function. 

 
 Let’s take another look at the first differential equation discussed in section 13.2. We would like to find a 

function y(t) that satisfies 

10 sin( )
dy

y t
dt

    

with 0y   at time t=0.  We won’t attempt to find an algebraic formula for y – instead, we will just 

compute the value of y at a series of different times between 0t   and 20t   - say 0, 0.1, 0.2...t t t    

To see how to do this, remember the definition of a derivative 

0

( ) ( )
lim
t

dy y t t y t

dt t 

  



 

So if we know the values of y and /dy dt at some time t, we can use this formula backwards to calculate 

the value of y at a slightly later time t t   

( ) ( )
dy

y t t y t t
dt

      

This procedure can be repeated to find all the values of  y we need.  We can do the calculation in a small 

loop.  Try copying the function below in a new M-file, and run it to see what it does. 
 

function simple_ode_solution 

% The initial values of y and t 

y(1) = 0; 

t(1) = 0; 

delta_t = 0.1; 

n_steps = 20/delta_t; 

for i = 1:n_steps 

    dydt = -10*y(i) + sin(t(i)); % Compute the derivative 

    y(i+1) = y(i) + delta_t*dydt; % Find y at time t+delta_t 

    t(i+1) = t(i) + delta_t; % Store the time 

end 

  

plot(t,y); 

  

end 

 



This function is quite complicated, so let’s look at how it works.   Start by noticing that t and y are two 

vectors, which contain values of time t and the corresponding value of y at each time.  The function just 
computes and plots these vectors – it accomplishes the same task as ode45. 

 

Now let’s take a look at how the vectors are calculated.   We know that at time t=0, y is zero.  So we put 

these in the first entry in the vector: y(1) = 0; t(1) = 0.     Next, we want to fill in the rest of the vector.  

We first need to calculate how long the vector will be: the line delta_t = 0.1 chooses the time 

interval t , and then n_steps = 20/delta_t calculates how many time intervals are required to 

reach  t=20sec.   Finally, look at the ‘for i=1:nsteps … end’  loop.  The calculation starts with i=1.  For 

this value of i, the program first calculates the value of dydt, using the values of y(1) and t(1).   Then it 

uses dydt to calculate the value of y(2), and calculates the corresponding value of t(2).  The calculation is 
repeated with i=2 – this defines the value of y(3) and t(3).  This procedure is repeated until all the values 

in the vectors t and y have been assembled. 

 

Now, we can use this idea to write a more general function that behaves like the MATLAB ode45() 
function for solving an arbitrary differential equation.  Cut and paste the code below into a new M-file, 

and then save it in a file called my_ode45. 
 

 

function [t,y] = my_ode45(ode_function,time_int,initial_y) 

  

  y(1) = initial_y; 

  t(1) = time_int(1); 

  n_steps = 200; 

  delta_t = (time_int(2)-time_int(1))/n_steps; 

  for i = 1:n_steps 

     dydt = ode_function(t(i),y(i));% Compute the derivative 

     y(i+1) = y(i) + delta_t*dydt;% Find y at time t+delta_t 

     t(i+1) = t(i) + delta_t;% Store the time 

  end 

end 

You can now use this function just like the built-in MATLAB ODE solver.  Try it by typing 
>> [t_values,y_values] = my_ode45(@simple_ode,[0,20],0); 

>> plot(t_values,y_values) 

into the MATLAB command window (if you get an error, make sure your simple_ode function defined in 
Section 13.2 is stored in the same directory as the function my_ode45). 

 

Of course, the MATLAB equation solver is actually much more sophisticated than this simple code, but it 
is based on the same idea. 

 

 

13.10 Other MATLAB ODE solvers 

 

The solver called ‘ode45’ is the basic MATLAB work-horse for solving differential equations.  It works 

for most ODEs, but not all.   MATLAB has many other choices if ‘ode45’ doesn’t work.  Using them is 
very similar to using ‘ode45’ but they use different numerical algorithms to solve the equations.   You can 

learn a lot more about MATLAB ODE solvers in the section of the manual shown below 



 

 

 

14. Using MATLAB optimizers and solvers to make design decisions 
 
In engineering, the reason we solve equations of motion is usually so that we can select design parameters 

to make a system behave in a particular way.   MATLAB has powerful equation solvers and optimizers 

that can be helpful to do this kind of calculation. 

 

14.1 Using fzero to solve equations 

 

The simplest design decisions involve selecting a single design parameter to accomplish some objective.  
If this is the case, you can always express your design problem in the form of a nonlinear equation, which 

looks something like 

( ) 0f x   

where f  is some very complicated function – perhaps involving the solution to an equation of motion.  

MATLAB can solve this kind of equation using the `fzero’ function. 

 

As a very simple example, here’s an ‘m’ file that will solve the equation sin( ) 0x x  ,  

 

function solveequation 
% Simple example using fsolve to solve x + sin(x)=0 

  
sol_for_x = fzero(@fofx,[-100,100]) 

 
  function f = fofx(x) 
%     Function to calculate f(x) = x + sin(x) 
  f = x+sin(x); 

 
  end 
end 

 



Notice that ‘fsolve’ works much like the ODE solver - The function ‘fzero(@function,[initial guess 

1,initial guess 2])’.   The two initial guesses should bracket the solution – in other words, f(x) should 
change sign somewhere between x=initial guess1 and x=initial guess2.   The solution to the equation is 

printed to the main MATLAB window. 

 

 

14.2 Simple unconstrained optimization example 

 

MATLAB has a very powerful suite of algorithms for numerical optimization.  The simplest optimizer is 
a function called ‘fminsearch,’ which will look for the minimum of a function of several (unconstrained) 

variables.    

 
As a very simple example, let’s try to find the value of x that minimizes the function 

 
2

( ) 5 4f x x    

 
function minimizef 
% Function to compute projectile velocity required to hit a target 
% target_position is the distance from the launch point to the target 

  

 
optimal_x = fminsearch(@fofx,[3]) 

  
   function f = fofx(x) 
% Function to calculate f(x)=(x-5)^2+4 
      f = (x-5)^2+4; 
  end 
end 

 

The script should be fairly self-explanatory.  The function fminsearch(@function,guess) tries to 

minimize ‘function’ starting with an initial guess ‘guess’  for the solution.  If the function has many 

minima, it will always return the first solution that it finds, by marching downhill from the ‘guess.’ 

 

For example, modify your script to minimize ( ) sin( )f x x x  .   Try to find three or four minima by 

starting with different initial guesses. 

 
Note that MATLAB has no explicit function to maximize anything.   That’s because there’s no need for 

one.  You can always turn the problem:  ‘maximize f(x)’ into ‘minimize –f(x)’. 

 

MATLAB can also optimize a function of many variables.   For example, suppose we want to find values 
of x,y that minimize 

 ( , ) sin( )cos( )z x y x y  

We can do this as follows 
 

function minimizez 
% Function to find values of x and y that minimize sin(x)*cos(y) 

  
optimal_xy = fminsearch(@zofw,[1,2]) 

  
   function z = zofw(w) 
% w is now a vector.  We choose to make w(1)=x, w(2)=y 

      x = w(1); y=w(2); 



      z = sin(x)*cos(y); 
   end 
end 

 
The only thing that has changed here is that our function zofw is now a function of a vector w=[x,y] that 

contains values of both x and y.    We also need to give MATLAB a vector valued initial guess for the 

optimal point (we used x=1,y=2). 
 

You can include as many variables as you like in the vector w. 

 

 

14.3 Optimizing with constraints 

 

You are probably aware by now that most engineering optimization problems involve many constraints – 
i.e. limits on the admissible values of design parameters.  MATLAB can handle many different kinds of 

constraint. 

 
We’ll start by summarizing all the different sorts of constraints that MATLAB can handle.  As a specific 

example, let’s suppose that we want to minimize  

( , ) sin( )cos( )z x y x y  

We could: 
1. Find a solution that lies in a particular range of x and y.  This could be a square region 

 min max min maxx x x y y y     

or, for something a bit more complicated, we might want to search over a triangular region 

max0 2 4x x x y     

2. Search along a straight line in x,y space – for example, find the values of x and y that minimize 
the function, subject to  

 3 10 14x y   

3. Search in some funny region of space – maybe in a circular region 

 
2 2( 3) ( 8) 10x y     

4. Search along a curve in x,y space – e.g. find the values of x and y that minimize the function, with 

x and y on a circle with radius 3   

 
2 2 3x y   

In really complicated problems, you could combine all four types of constraint.  MATLAB can handle all 

of these.  Here, we’ll just illustrate cases 1 and 2 (this is all you need if you want to use the optimizer in 

your design projects). 
 

As a specific example, let’s suppose we want to minimize  

( , ) sin( )cos( )z x y x y  

subject to the constraints 

0 10 2 4 3 10 14x x y x y       

These are constraints of the form 1 and 2.    To put the constraints into MATLAB, we need to re-write 
them all in matrix form.   Suppose that we store [x,y] in a vector called w.   Then, we must write all our 

constraints in one of 3 forms: 



min

max









w w

w w

Aw b

Cw d

 

Here, max min,w w  are vectors specifying the maximum and minimum allowable values of w.  A and C are 

constant matrices, and b and d are vectors.   For our example, we would write 

  

 

min max

0 10

1 2 [4]

3 10 [14]

   
    

    

 

  

w w

A b

C d

 

In our example, A, b, C, d, each had just one row – if you have many constraints, just add more rows to 

all the matrices and vectors. 

 
Now we have the information needed to write an ‘m’ file to do the minimization.  Here it is: 

 
function constrained_minimization_example 
% Function to find values of x and y that minimize sin(x)*cos(y) 
  

A=[1,2]; b=[4]; C=[3, -10]; d=[14];wmin=[0,-Inf];wmax=[10,Inf]; 
optimal_xy = fmincon(@zofw,[1,2],A,b,C,d,wmin,wmax) 

  
   function z = zofw(w) 
% w is now a vector.  We choose to make w(1)=x, w(2)=y 

      x = w(1); y=w(2); 

      z = sin(x)*cos(y); 
   end 
end 

 
If you run this script, you’ll get the following message in the MATLAB window 

 
You can ignore the warning – all this guff means that MATLAB found a minimum.  The values for x and 

y  are 4.25 and -0.125.   

 
This is just one possible minimum – there are several other local minima in this solution. You’ll find that 

the solution you get is very sensitive to the initial guess for the optimal point – when you solve a problem 



like this it’s well worth trying lots of initial guesses.   And if you have any physical insight into what the 

solution might look like, use this to come up with the best initial guess you can. 
 

 

Here’s an explanation of how this script works.   The constrained nonlinear optimizer is the function 
fmincon(@objective_function,initialguess,A,b,C,d,lowerbound,upperbound) 

 

1. The ‘objective function’ specifies the function to be minimized.  The solution calculated by the 

function must always be a real number.   It can be a function of as many (real valued) variables as 
you like – the variables are specified as a vector that we will call w.  In our example, the vector is 

[ , ]x y . 

2. The ‘initial guess’  is a vector, which must provide an initial estimate for the solution w.  If  
possible, the initial guess should satisfy any constraints. 

3. The arguments ‘A’   and ‘b’  are used to specify any constraints that have the form Ax b , where 

A is a matrix, and b is a vector.  If there are no constraints like this you can put in blank vectors, 

i.e. just type [] in place of both A and b. 

4. The arguments C and d enforce constraints of the form Cw d .  Again, if these don’t exist in 

your problem you can enter [] in place of C and d. 

5. The lowerbound and upperbound variables enforce constraints of the form min max w w w , 

where lowerbound is the lowest admissible value for the solution, and upperbound is the highest 

admissible value for the solution.   

 
 

 

15. Reading and writing data to/from files 
 

MATLAB is often used to process experimental data, or to prepare data that will be used in another 

program.   For this purpose, you will need to read and write data from files.  Learning to read and write 
data is perhaps the most difficult part of learning MATLAB, and is usually a big headache in mastering 

any new programming language.  Don’t worry if this section looks scary – you won’t need to do any 

complicated file I/O in this class.  You could even skip this section altogether the first time you do this 
tutorial, and come back to it later. 

 

MATLAB can read a large number of different types of file, including simple text files, excel worksheets, 
word documents, pdf files, and even audio and video files.  We will only look at a small subset of these 

here. 

 

Comma separated value files are the simplest way to get numerical data in and out of MATLAB.  For 
example, try the following in the command window 

>> A = pascal(5); 

>> csvwrite(‘examplefile1.dat’,A); 
Then open the file examplefile1.dat with a text editor (Notepad will do).  You should find that the file 

contains a bunch of numbers separated by commas. Each row of the matrix appears on a separate line.  

You can read the file back into MATLAB using 
>> B = csvread(‘examplefile1.dat); 

>> B 

If you are using this method to read experimental data, and need to know how much data is in the file, the 

command 
>>[nrows,ncols]=size(B) 

will tell you how many rows and columns of data were read from the file. 



 

Using the ‘import’ wizard  Simple files, such as comma-separated-value files, simple spreadsheets, audio 
files, etc can often be read using the ‘import’ wizard.  To try this, click the ‘Import Data’ button on the 

main matlab window (see below) 

 

 
 

 

and then select ‘import file’ from the popup window.   The resulting window should show you what’s in 

the file, and give you some options for reading it.  If you then select ‘Import Selection>Import Data’, the 
data in the file will be read into a matrix valued variable called ‘examplefile1’ 

 

Formatted text files: With a bit of work, you can produce more readable text files.   For example, write a 
MATLAB script in an M-file containing the following lines 

   s = ['Now is the winter of our discontent               '; 

          'Made glorious summer by this son of York   '; 

          'And all the clouds that lowrd upon our house'; 
          'In the deep bosom of the ocean buried           ']; 

% Note that you have to add blanks to make the lines all the same length, or MATLAB gives an error 

    phone = [202,456,1414]; 
    pop = 7054168338; 
  outfile = fopen('examplefile2.dat','wt'); 
  fprintf(outfile,' MY FILE OF USEFUL INFORMATION \n\n'); 
  fprintf(outfile,' First lines of Richard III \n'); 
  fprintf(outfile,'    %44s \n',s(1,:),s(2,:),s(3,:),s(4,:)); 
  fprintf(outfile,'\n Phone number for White House: '); 
  fprintf(outfile,'%3d %3d %4d',phone); 
  fprintf(outfile,'\n\n Estimated global population on Jan 1 2012 %d',pop); 
  fclose(outfile); 

Then run the script, open the file examplefile2.dat to see what you got.  For full details of the fprintf 
command you will need to consult the MATLAB manual (look under ‘Functions’ for the entry entitled 

I/O).  Here is a brief explanation of what these commands do. 

1. The outfile=fopen(‘filename’,’wt’) command opens the file – the argument ‘wt’ indicates that the 
file will be opened for writing.   If you omit the second argument, or enter ‘r’ the file will be 

opened for reading. 

2. The fprintf(outfile,’ some text \n’) command will write some text to the file.  The \n tells 

MATLAB to start a new line after writing the text. 
3. The fprintf(outfile,’ %44s \n’, string1, string2, …) command writes a succession of character 

strings, each 44 characters long.  Each character string will be on a new line. 

4. The fprintf(outfile,’%3d  %3d  %4d’,vector) writes a number 3 digits long, a space, another 
number 3 digits long, another space, and then a number 4 digits long. 

 

It usually takes a lot of fiddling about to get fprintf to produce a file that looks the way you want it. 



                            

To read formatted files, you can use the ‘fscanf’ command – which is essentially the reverse of fprintf.  
For example, the following script would read the file you just printed back into MATLAB 

infile = fopen('examplefile2.dat','r'); 
heading = fscanf(infile,' %30c',1); 
play = fscanf(infile,' %27c',1); 
s = fscanf(infile,'    %47c \n',4); 
dummy = fscanf(infile,'%30c',1); 
phone = fscanf(infile,'%4d',3); 
pop = fscanf(infile,'%*46c %d',1); 
fclose(infile); 

Run this script, then type 
>>s 

>>phone 

>>pop 

into the command window to verify that the variables have been read correctly. 
 

Again, you can read the manual to find full details of the fscanf function.  Briefly 

1. heading = fscanf(infile,' %30c',1) reads the first line of the file – the %30c indicates 

that 30 characters should be read, and the ‘,1’ argument indicates that the read operation should 

be performed once. 

2. s = fscanf(infile,'    %47c \n',4) reads the 4 lines of the play: each lines is 47 

characters (including the white space at the start of each line), and the \n indicates that each set of 
47 characters is on a separate line in the file. 

3. phone = fscanf(infile,'%4d',3) reads the White-house phone number, as 3 separate 

entries into an array.  The %4d indicates that each number is 4 digits long (the white space is 

counted as a digit and ignored). 

4. The pop = fscanf(infile,'%*46c %d',1) reads the world population.  The syntax  

%*46c indicates that 46 characters should be read and then ignored –i.e. not read into a variable.  
 

It is usually a pain to use fscanf – you have to know exactly what your input file looks like, and working 
out how to read a complicated sequence of strings and numbers can be awful. 

 

Reading files with textscan The problem with fscanf is that you need to know exactly what a file looks 

like in order to read it.   An alternative approach is to read a large chunk of the file, or even the whole file, 
at once, into a single variable, and then write code to extract the information you need from the data.  For 

example, you can read the whole of ‘examplefile2.dat’ into a single variable as follows 

>> infile = fopen(‘examplefile2.dat’,’r’); 
>> filedata = textscan(infile,’%s’); 

>> filedata{:} 

(Note the curly parentheses after filedata).  This reads the entire file into a variable named ‘filedata’. This 
variable is an example of a data object called a ‘cell aray’ – cell arrays can contain anything: numbers, 

strings, etc.   In this case, every separate word or number in the file appears as a separate string in the cell 

array.   For example, try typing 

>> filedata{1}{1} 
>> filedata{1}{10} 

>> filedata{1}{50} 

This will display the first, 10
th
 and 50

th
 distinct word in the file.  Another way to display the entire 

contents of a cell array is  

>>celldisp(filedata) 

You can now extract the bits of the file that you are interested in into separate variables. For example, try 



>> pop = str2num(filedata{1}{58}); 

>> for n=1:3 phone(n) = str2num(filedata{1},{47+n}); end 
>> pop 

>> phone 

Here, the ‘str2num’ function converts a string of characters into a number. (The distinction between a 

string of numerical characters and a number is apparent only to computers, not to humans.  But the 
computers are in charge and we have to humor them). 

 

Challenge: see if you can reconstruct the variable ‘s’ containing the Shakespeare.  This is quite tricky… 
 

MATLAB can read many other types of file.   If you are using a Windows PC, and enjoy bagpipe music, 

you could download this file and then type 

>> [y,fs,n] = wavread(filename); 
>> wavplay(y,fs); 

 

 

16. Animations 
 
In dynamics problems it is often fun to generate a movie or animation that illustrates the motion of the 

system you are trying to model.   The animations don’t always tell you anything useful, but they are 

useful to kill time in a boring presentation or to impress senior management. 
 

Making movies in MATLAB is simple – you just need to generate a sequence of plots, and display them 

one frame at a time.  But animations can be a bit of a chore – it can take some fiddling about to get 

MATLAB to plot frames at equal time intervals, and it is tedious to draw complicated shapes – everything 
needs to be built from scratch by drawing 2D or 3D polygons. 

 

As always, the procedure is best illustrated with examples.   
 

Example 1: Movie of a flying projectile: The script below makes a movie showing the path of a projectile 
 

function trajectorymovie 
% Function to make a movie of the trajectory of a projectile 

  
close all  
V0 = 1; % Launch speed 
theta = 75; %Launch angle 
c = 0.2; % Drag coefficient 
time_interval = 0.005;  % time interval between movie frames 
max_time = 1; % Max time of simulation. 
theta = theta*pi/180; % convert theta to radians 
w0 = [0;0;V0*cos(theta);V0*sin(theta)]; 

  
options = odeset('Events',@events); 
[t_vals,sol_vals] = ode45(@odefunc,[0:time_interval:max_time],w0,options); 

  
for i=1:length(t_vals) 
   clf % Clear the frame 
   plot(sol_vals(:,1),sol_vals(:,2)) % Plot the trajectory as a line 
   hold on 
%  The projectile is simply a single point on an x-y plot 
   

plot(sol_vals(i,1),sol_vals(i,2),'ro','MarkerSize',20,'MarkerFaceColor','r');  



   axis square 
   pause(0.05); % This waits for a short time between frames 
end  

  
function dydt = odefunc(t,w) 
   x = w(1); y=w(2); vx = w(3); vy = w(4); 
   vmag = sqrt(vx^2+vy^2); 
   dydt = [vx;vy;-c*vx*vmag;-9.81-c*vy*vmag]; 
end 

  

      function [eventvalue,stopthecalc,eventdirection] = events(t,w) 
        % Function to check for a special event in the trajectory 
        % In this example, we look 
        % (1) for the point when y(2)=0 and y(2) is decreasing. 
        % (2) for the point where y(4)=0 (the top of the bounce) 
       y = w(2); vy = w(4); 
       eventvalue = [y,vy]; 
       stopthecalc = [1,0]; 
       eventdirection = [-1,0]; 
      end 

  
end 

 

 

Example 2: Movie of a freely rotating rigid body The script below makes a movie showing the motion of 

a rigid block, which is set spinning with some initial angular velocity. The code also can print an 
animated .gif file that you can put on a webpage, use in a powerpoint presentation, or post on your 

facebook page.   
function tumbling_block 
% Function to make a movie of motion of a rigid block, with dimensions 
% a = [a(1),a(2),a(3)], which has angular velocity vector omega0 
% at time t=0 
% The code includes lines that can save the movie to an animated gif 
% file for use e.g. on a webpage or a presentation. 
a = [1,2,4]; % Dimensions of the block 
omega0 = [0,1,0.1]; % Initial angular velocity of the block 
time = 30; % Time of the computation 
n_frames = 240; % # frames in the movie 

  
% This creates vertices of a block aligned with x,y,z, with one 
% corner at the origin 
initial_vertices = 

[0,0,0;a(1),0,0;a(1),a(2),0;0,a(2),0;0,0,a(3);a(1),0,a(3);a(1),a(2),a(3);0,a(

2),a(3)]; 
% This loop moves the center of mass of the block to the origin 
for j=1:3 
  initial_vertices(:,j) = initial_vertices(:,j)-a(j)/2; 
end 
face_matrix = [1,2,6,5;2,3,7,6;3,4,8,7;4,1,5,8;1,2,3,4;5,6,7,8]; 

  
% This sets up the rotation matrix at time t=0 and the angular 
% velocity at time t=0 as the variables in the problem 
y0 = [1;0;0;0;1;0;0;0;1;transpose(omega0(1:3))]; 
% This creates the inertia matrix at time t=0 (the factor m/12 has 
% been omitted as it makes no difference to the solution) 



I0 = [a(2)^2+a(3)^2,0,0;0,a(1)^2+a(3)^2,0;0,0,a(1)^2+a(2)^2]; 

  
options = odeset('RelTol',0.00000001); 
% Here we use ode45 in a new way.  Instead of computing times and 
% solution values at discret points, we put everything about the solution 
% in a variable called sol.  We can use this variable to reconstruct 
% the solution later. 
sol = ode45(@odefunc,[0,time],y0,options); 

  
close all 
count = 0; 
ax_length = max(a)/2;  
scrsz = get(0,'ScreenSize'); 
% The line below can be used to change the size of the image 
% (useful if you want to reduce the size of the .gif file) 
figure1 = figure('Position',[scrsz(3)/2-200 scrsz(4)/2-200 400 

400],'Color',[1 1 1]); 
for i=1:n_frames 
   count = count + 1; 
   t = time*(i-1)/(n_frames-1); 
   y = deval(sol,t); 
   R= [y(1:3),y(4:6),y(7:9)]; 
   new_vertices = transpose(R*transpose(initial_vertices)); 
   clf; 
%   axes1 = axes('Parent',figure1,'Position',[0.3804 0.3804 0.44 0.46]); 
   

patch('Vertices',new_vertices,'Faces',face_matrix,'FaceVertexCdata',hsv(6),'F

aceColor','flat'); 
   axis([-ax_length,ax_length,-ax_length,ax_length,-ax_length,ax_length]) 
   axis off 
   pause(0.05) 
%   Uncomment the lines below to create an animated .gif file 
%   if (count==1)  
%        set(gca,'nextplot','replacechildren','visible','off') 
%        f = getframe; 
%        [im,map] = rgb2ind(f.cdata,256,'nodither'); 
%    else 
%      f = getframe; 
%      im(:,:,1,count) = rgb2ind(f.cdata,map,'nodither'); 
%    end 
end 
% Uncomment the line below to save the animated .gif file 
%imwrite(im,map,'animation.gif','DelayTime',0,'LoopCount',inf) 

  
function  dwdt = odefunc(t,w) 
% Function to calculate rate of change of rotation matrix 
% and angular acceleration of a rigid body. 
   omega = [w(10:12)];  % Angular velocity 
   R= [w(1:3),w(4:6),w(7:9)]; %Current rotation matrix 
   I = R*I0*transpose(R); %Current inertia matrix 
   alpha = -I\(cross(omega,I*omega)); % Angular accel 
% Next line computes the spin matrix 
   S = [0,-omega(3),omega(2);omega(3),0,-omega(1);-omega(2),omega(1),0]; 

  
   Rdot = S*R; % Rate of change of rotation matrix dR/dt 
   dwdt(1:9) = Rdot(1:9); %Columns of dR/dt arranged in sequence in dydt 



   dwdt(10:12) = alpha; 
   dwdt = transpose(dwdt); %make dydt a column vector 
end 

  
end 

 

 

 

COPYRIGHT NOTICE: This tutorial is intended for the use of students at Brown University.  You 

are welcome to use the tutorial for your own self-study, but please seek the author’s permission 

before using it for other purposes. 

 
A.F. Bower  

School of Engineering 

Brown University 
December 2013 


