SUMMARY

CDI TYPE I: A Communications Theory Approach
to Morphogenesis and Architecture Maintenance

The assertion that biological systems are communicatitmorks would draw no rebuke from
biologists — the termsignaling communicationandnetworkare deeply embedded parts of the
biology parlance. However, the more profound meanings fofimation and communication are
often overlooked when considering biological systems.onmfation can be quantified, its flow
can be measured and tight bounds exist for its represemtticdo conveyance between transmitters
and receivers in a variety of settings. Furthermore, comaations theory is aboufficientcom-
munication where energy is at a premium — as is often the casgganisms. But perhaps most
important, information theory allows mechanism-blind bds on decisions and information flow.
That is, the physics of a system allows determination oftinthatany method of information
description, delivery or processing must obey.

Thus, rigorous application of communication theory to ctarpnulti-cellular biological sys-
tems seems both attractive and obvious as an organizingien- a way to tease order from
the myriad engineering solutions that comprise biologsyatems. Likewise, study of biological
systems — engineering solutions evolved over eons — mighd yiew communication and com-
putation theory. Yet so far, a communications-theoretigrapch to multi-cellular biology has
received scant, if any, attention. We therefore proposeptoee this interdisciplinary intellectual
gap under the auspices of the NSF CDI program.

The intellectual merit of the proposed research lies ¢areful and rigorousexploration of
communications theory concepts applied to signaling betmand within cells irmulti-cellular
networks Energy consumption is a key feature in both biological mekwng problems and in the
formal specification of communications problems and fos ti@ason we believe that a commu-
nications theory perspective may help illuminate biolagjimechanisms in specific areas such as
tissue biology, cancer biology, the biology of aging, ananalbial ecosystems as well as other
areas where a formal network perspective may be approptikiewise, we suspect that the exis-
tence proof provided by living things, in combination witc@mmunication-theoretic perspective,
can provide new approaches to biological and non-bioldgiegineering problems.

Thebroader impact of developing an effective communications framework faibgical sys-
tems which can both explain and predict the general behaviowlti-cellular systems over time
is difficult to overestimate. The most obvious impact araaseanbryology, development, aging
and age-related diseases such as cancer in biology, andutist specification and assembly of
robust structures in engineering, but a multitude of otlpgliaations in biology and engineering
are clearly possible. A more modest, but still potentialtgfpund and important impact of the
proposed work would be to delineate the limits of key biotadicommunications methods. For
instance, are signaling methods such as chemical gradienessary and sufficient to rigorously
explain tissue development, organization, maintenandeaging? For any given method can we
derive bounds on how much cells can possibly say to one anatitkhow they might say it? We
expect the answers will be of great interest to both the roellular biological community and the
communications theory community.
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1 Introduction

The assertion that biological systems are communicaticwarks would draw no rebuke from biologists
— the termssignaling communication and networkare deeply embedded parts of the biology parlance.
However, the more profound meanings of information and camipation are often overlooked when con-
sidering biological systems. Information can be quantjfiedflow can be measured and tight bounds exist
for its representation and conveyance between transmigd receivers in a variety of settings. Further-
more, communications theory is abaificientcommunication where energy is at a premium — as is often
the case in organisms. But perhaps most important, infeom#teory allows mechanism-blind bounds on
decisions and information flow. That is, the physics of aaystllows determination of limits thany
method of information description, delivery or processingst obey.

Thus, rigorous application of communication theory to cterpnulti-cellular biological systems seems
both attractive and obvious as an organizing principle — @ twdease order from the myriad engineering
solutions that comprise biological systems. Likewisedsgtaf biological systems — engineering solutions
evolved over eons — might yield new communication and coatjort theory. Yet so far, a communications-
theoretic approach to multi-cellular biology has receigednt, if any, attention. We therefore propose to
explore this interdisciplinary intellectual gap under thespices of the NSF CDI program.

We begin with a roadmap to this multi- and inter-disciplinproposal. Unlike area-specific work where
the general problems are understood and widely accepisgritposal spans at least two major topics and
a number of subdisciplines within these major areas. Tlatiser than stating research goals and reviewing
previous work at the outset as is normally done, we have takemmewhat spiral approach. In section 2
we cover necessary background material while introdudiegideas underlying the proposed research. In
section 3 we begin to explore basic research questions aisit teem in increasing detail until descriptions
of specific mathematical biological communications praidecan be considered. A brief review of related
prior work follows in section 4 and allows us to compare poegi approaches to what we propose. Then in
section 5 our research goals are listed. We felt this orgdiniz would allow the widest range of readers to
more easily evaluate the proposed work.

It is also worth mentioning here that although we have deditedy taken a more communications theo-
retic approach to multi-cellular communication, we are 1@ the many complexities inherent in and man-
ifested by real-world multi-cellular systems [1-21]. The Rave experience deriving and applying mathe-
matical models of biological systems using a variety of dpige (phenomenological) approaches [22—-31]
and statistical machine learning (data-driven) appros¢B2-50]. However, with this work, rather than
starting with observed phenomena and providitesgcriptions[51], we seek to first establish inviolable
bounds on communication that all biological systems museyand thereby makgredictionsabout what
biological systemsnustdo under basic physical assumptions. We will then circl&klibmough heteroge-
neous, publicly available, Web-based databases and oesoto identify existing (or uncover new) data,
information and knowledge that support our results, a geteat will almost certainly suggest new exper-
iments designed to assess the validity of particularly irtgra predictions. (See, for example, our previous
integrated computational-experimental studies [10,6%52-68].)

Or more simply put, we will seek basic physical models intdolhsignaling schemes must fit and
then pursue their implications for the development and teaence of form and function in multi-cellular
biological systems —that is, the communications theorgetspfmorphogenesiand tissue architecture. Of
course, there exists a danger that simple models will ol te trite conclusions. However, we will see in
later sections that with even minimal attention to modetietpil, interesting organizational and operational
principles emerge that can guide biological experimentiadéind discovery.
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2 Background
2.1 Signalingin Biological Systems

Any organism composed of more than one cell is by definitionraraunications network. Such networks
span the range of complexity from microbial ecosystems ssdbiofilms, microbiomes and bacterial mats
to animal and plant tissues, organs, organisms, poputatinod ecosystems. Two examples of multi-cellular
systems at the tissue- and organism-level are providedGURE 1 to familiarize non-biologists with the
stunning complexity (and beauty) of biological matter & ¢ellular level. As if by magic, a seemingly non-
descript clump of cells becomes an organism through a sequardistributed yet carefully choreographed
decisions. Signaling within and between cells is accorhptisthrough a variety of chemical, electrical,
mechanical and other means so that individual cells caregbieg cellular and non-cellular environment to
make appropriate functional and behavioral choices.

Figure 1: Photomicrographs of com{
plex biological systems comprised @
multiple heterogeneous intercomm
nicating cells. LEFT: Adult mam-
mary gland tissue showing (a) part g
the ductal tree and (b) a cross-sectifias
through the duct and acinus of a te -
minal end bud. RIGHT: Developme &3

of a Drosophilaembryo (gastrulation) S
[69] starting from a cellular blastoder
(upper left). Individual cells visible.

Signals can be conveyed using chemicals (hormones, cgmkigrowth factors, ions, drugs, small
molecules, neurotransmitters, peptides, proteins,djpdrbohydrates), mechanical forces, pressure, tem-
perature, light, electrical potentials and magnetic flukn8li may trigger various responses occurring over
different time scales such as an alteration in cell metahygla change in cell membrane voltage, activation
of gene expression (transcription in the nucleus) and eedirhotion, to name a few. Often such signal trans-
duction involves a sequence of biochemical or other reastidhereby one molecular species is converted
to another which in turn constitutes the input for the neactmn. This sequence of events is often called
a signaling pathwayand the collection of intercommunicating pathways rednltsignaling networksThe
behavior of a given signaling pathway and hence signalimgors may be modulated by different stimuli.
(A variety of Web-based portals have been developed to tmligate and understand the vast body of work
on cellular interpretation of signals in context-dependaanners — see, for example [70-72].)

Although this basic network analogy can be pursued at a nuofdevels, from ecosystems to popula-
tions to organisms to organs to tissues to cells to molecwesvill focus on cells as the fundamental unit of
organization. There are a number of reasons for this choitteperhaps the most obvious being that cells
are discrete entities with clearly definable boundariesttheamore, cells are specialized, self-contained,
self-powered, sensing and communication platforms tigerize themselves into myriad complex systems.
In addition, since elucidating the full repertoire and ftimig(s) of the molecular components of cells is an
integral part of genome biology and an important componéntany other fields, a careful investigation of
the form and function of tissues comprised by cells seemasorable next step and one which has so far
received considerably less attention. We will also focusarily on epithelial tissue because it exemplifies
the interplay between morphogenesis, architecture, asghde, a feature that has been demonstrated most
comprehensively for the mammary gland where studies hawerskhat its cells communicate in spatially
precise ways to both attain structure (morphogenesis) aidtain structure in the face of various insults,
both gross and genetic [73-80].
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2.2 Mechanicsof Intercell Signaling

Intercellular communication occurs through mechanisnisstiructures mediated by the cell membrane. A
gap junctionis an area of apposed cell membranes containorgiexonsproteins that bridge the extracel-
lular space between two cells and allow the cytoplasm of efleé@communicate directly with that of the
other via chemical and/or electrical means. Some categofichemical signals, for example a gas such as
nitric oxide, simply diffuse across the cell membrane i@ ¢tytoplasm and then, possibly, into the interior
of a membrane-bound intracellular organelle (nucleuspchibndrion, lysosome, endoplasmic reticulum)
where they effect a response.

In receptor-mediated signaling — perhaps the most impbfteam of communication between cells in
a tissue — chemical signals, often small protein ligand$ sishormones diffuse through some medium
and bind to a specific protein located in the cell membraneterAatively, the signal might reduce the
concentration of specific ligands local to the target celleither case, the ligand-receptor complex mediates
the transmission of extracellular signals to the interiba aell. The reverse process (sometimes using the
same structures, sometimes not) conveys intracellulaago the exterior. Receptor-mediated signaling
involving hormones can be roughly divided irdodocrine a signal which travels through some extracellular
medium to distant cellgparacrine a signal received only by cells in the same vicinaytocrine a signal
received by cells of the same type or the sender cell itsetf jaxtacrine a signal which travels along or
through the cell membrane and is received by the sendeitsell or a physically adjacent cell.

A cell interacts dynamically and reciprocally with its aglr and non-cellular environments at many
levels. Locally within its niche, a cell responds and is e to neighboring cells, the extracellular
matrix, and soluble factors. In a tissue, cells/nichesr#teénced by myriad hormonal and chemical signals.
The systemic milieu affects the tissue and this in turn iecéd by external environmental influences.
Overall, endocrine, paracrine, autocrine and juxtacrigaats are chemical signals that play critical roles
in communication within and between layers of this orgatiorel hierarchy. Also, as might be expected in
biological systems where evolution parsimoniously re@sasadapts basic themes to fit different purposes,
communications methods can be assemblages or cascadesedbasa methods — such as auditory signal
transduction in hair cells which incorporates mechanicaemical and electrical means to relay sound
stimuli to nerve fibers.

Our particular focus will be on the communications aspetferm and function development in multi-
cellular systems (morphogenesis). However our overall\gdkbe to understand the capabilities and limi-
tations of information transfer within multi-cellular sgsns. To this end, we now provide a brief overview
of relevant communications theory concepts.

2.3 A Communications Theory Primer

Shannon theory [81-84] enables specification of two inbieldounds — the lowest information rate needed
to faithfully represent a message source, and the highesifaeliable message delivery through some
medium under transmission energy constraints. These Baanedthesource entropy ratand thechannel
capacity respectively. Rate distortion theon|83, 84], specifies how much information is necessary to
approximate an information source under some fidelity oitewhen a complete source specification is too
large. These basic communications ideas (and associatedi$)dfall under the general topicioformation
theoryand are applicable to any scenario comprised of messageespehannels through which messages
can be conveyed, and receivers that care about the messHgjesuse of the plural — soursechanned
and receives— is deliberate. Information theory, and the maturing arfegetwork information theory, deal
with all manner of intercommunicating elements [84]. Hoerewe will confine ourselves here to the basic
concepts with a single source, channel and receiver.

Entropyis a measure of what one does not know about a given randomvabieX having probability
density fx (z). Entropy is formally defined as

H(X) ==Y fx(x)log fx() (1)
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for discreteX and as an integral for continuous. The base of thivg() determines the units; i.e., if natural
log is used, the units are “nats” while if bagds used, the units are “bits.” Besides having a number of
desirable and intuitive mathematical properties, the difinis completely consonant with thermodynamic
entropy via statistical mechanics. Furthermore, the ideale extended tentropy rateif X is a time-
varying correlated stochastic sequence rather than asiagtiom variable.

For discreteX, mappingX to Y compactly and losslessly is callsturce codingand the associated
landmark result is that for any number of code bits per synibgtalled a code rate) which exceeds the
source entropyd (X ), we can find a code which losslessly encodes the message souFrom a resource
use perspective, it is often useful to makeas small as possible. However, the converse to the coding
theorem states that ® < H(X) then loss is inevitable. Thus, we have a first inkling of wiia term
mechanism blindmplies. The coding theorem states that any rate alioy& ) can be achieved losslessly
and that any rate below cannot. The mechanism by which onketrigld good codes is not relevant to the
bounds obtained through the coding theorem and thus fresmshaving to consider the details of each
possible coding method. But perhaps the most important pbihe coding theorem is the converse, which
keeps us from seeking the “perpetual motion” solution oficgdates below the source entropy.

Understanding information delivery leads to the concephafual information- the amount ofnfor-
mationobservations of provide about’”. The formal definition is rather intuitive:

I(Y:2) = H(Y) - H(Y|Z) 2)

or the average amount by which knowirg reduces the initial uncertainty about (entropy &f) In a
communications context, we often assume causality>- Z, in which case the stochastic mapping from
random variablé” to random variableZ is called the communicatiorghannel

The data processing theorem I(X;Y) > I(X;¢g(Y)) — will prove extremely useful. It states that
no amount of “processing” (represented by the functj¢y) can increase the mutual information between
X andY. That is, all the information we can possibly obtain abdutis contained inY” and loosely
speaking the best we can do is to preserve it. The data piogetseorem seems particularly important
when considering multi-cellular biological systems sitice constituent units, cells, can be machines of
dizzying complexity. However, in conveyance of informatizetweercells, the theorem applies no matter
what the cellular complexity and therein lies its simplifgiutility.

Mutual information also allows quantitative consideratigf continuous sourceX which do not have
finite descriptions. For example, a finite number of bits caraxactly represent every real number on the
interval [0, 1] and we must accept some error. If we quantify the error witlistortion measurel(x, ¢(x))
whereg(x) is a finite representation af, we can then ask how many bits per source symRgt), are
required on average to representigiormation sourceX under an average acceptable distortion constraint
e. Rate distortion theoryells us that

R(e) = min I(X;q(X ,
() (), Bld(X,q(X))]<e (X5 9(X)) 3)

Just as important, rate distortion theory also tells usahgtcoding rate belou(¢) results in unacceptable
average distortion.

Perhaps the most famous information theoretic result istiamnel capacity theorem which states that
the maximum rate at which information can be delivergdhbly (error free) over a channel defined by the
probabilistic mappingf |y (z|y) is

C= max I(Y;2) 4)
r(),&y <P
in bits per channel use. The maximization is over the champeit distribution fy-() subject to an input
energy constrainfy < P sinceY is assumed to represent a real physical quantity. Similtnedsource
coding theorem and rate distortion theory, the converdesstaat if a transmission rafe > C'is attempted,
error is unavoidable. This result, in combination with tleeiee coding theorem whebé is derived via
coding X (or ¢(X) if X is continuous) implies that fak (X) < C, reliable transmission is possible — and
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impossible ifH(X) > C. Once again it is important to note that the result is meamarilind. The best
coding and transmission methods are either error free gratenot.

There are, of course, caveats. The source coding theoreith@rtiannel capacity theorem are asymp-
totic in nature. The bounds assume coding and transmissine over an infinite number of symbols. Put
another way, for any finite number of symbols, the probabditerror is non-zero for any non-trivial chan-
nel. However, the convergence toward zero probability ofreis exponential in sequence length, so this
issue if often more technical than practical. Furthermare will not (at least at first) seek to posit actual
coding methods for biological systems, but rather, seebliavle bounds based on the physics which all
multi-cellular systems must obey.

Another caveat concerns channels with feedback. Homeog&at other) feedback mechanisms abound
in biological systems. If the channel is memoryless (wheegipus channel inputs do not affect future out-
puts) the capacity theorem holds even if the receiver pes/idedback to the source. However, for channels
with memory, the feedback capacity can exceed the bounduattieqp (4). This issue is often addressed by
modifying signal representations so that from the persgecf the transformed system, the channel (or a
decomposed channel ensemble) is again memoryless.

This possible need for signal transformations leads todketbpic in this primer — the concept of a
signal space It is often convenient to represent signalg) ass(t) = >, sx¢x(t) where thes;, are the
projectionsof the signals(t) onto theorthogonal basis function§g,(¢)}. Just as we represent a point in
physical space using three perpendicular (orthogonaldioates (also calledegrees of freedoynwe can
represent functions as projections onto sets of orthoganations. The idea can be extended to joint space-
time signal variations as well. The utility of a signal spap@roach stems from both how signals propagate
through channels and in how source signals are represantethis of information. Notably, signal space
methods are used in combination with equation (4) to derhaen8on’s famous Gaussian channel capacity
theorem and its extension to channels with memory.

2.4 A Multi-Cdlular Communication Framework

In the multi-cellular biological context, a message canreiaformation the environment, a sender cell (or
group of cells) seeks to convey. The most fundamental arglitbus intercellular communication method
is chemical signaling whereby cells produce signaling &gémat are selectively sensed by specialized
receiver structures on the same or other cells. Developofesignal space models for the temporal and
spatial variation of such signals is relatively straightfard. Chemical properties of ligands and receptors
as well as genetic features (such as splice variants of g gésteconstitute degrees of freedom that might
be amenable to some form of signal space representationchimmel is the physics that allows transport
of signaling agents as well as the set of actuators betweenanthe message resides (transmitting cell(s))
and where action is taken (receiving cell(s)).

Identification of specific biological signaling agents andlecular mechanisms is a daunting experi-
mental task and one which already consumes a significanbfidue research community. However, though
such details are necessary to understand (and influence pharmacologically) specific biological sys-
tems, the beauty of a communications theory approach ighkaletailed methods by which information
is conveyed do not affect the bounds on how much informatienet is or how rapidly it can be reliably
delivered. Put another way, in pursuing a communicatibesitetic approach to biological signaling, we
need not assume that biological systems practice any piartistyle of coding or transmission. Rather,
communications theory places fundamental limitsaoly method biological systems use to perform infor-
mation transfer. Once the physical substrate is descrdmdmunications theory providesechanism-blind
bounds.

The signal to noise ratio (SNR) is a simple but illustratixarmple of mechanism-blindness in telecom-
munications theory. For a channel described-fy = s(t) + w(t) wheres(t) is the information-bearing
signal,w(t) is noise and-(t) is the received signal, there is an infinity of potential siggnd receiver struc-
tures to carry information over the channel. Howevenyit) is white Gaussian noise, communications
theory tells us that the figure of merit is the energy carrigdignal s(¢) relative the noise energy in the
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signal space occupied byt) — the SNR [84—-87]. The detailed structure of the receiversigdal do not
affect the theoretical bounds on information flow.

A variety of similar bounds exist for networks of communingtelements [84]. It is this generality and
implicit reduction of complexity that constitutes the poveé a communications-theoretic lens. Therefore,
by analyzing channel physics and using energy-efficienanasganizing principle, communications theory
may help refine and extend our understanding of multi-calobmmunications and its role in morphogen-
esis, tissue maintenance, aging and disease — all comptansy where in health, cells communicate in
spatially precise ways to reliably develop and maintaisuisstructures.

3 Research Plan

3.1 TheLimitsof Cdlular Conversations

The most obvious question regards how information is codeddelivered in multi-cellular systems. The
ubiquity of diffusive signaling agents suggests that efatiog the details of various diffusion channels
— including those with multiple signaling species and nplétispatially distinct receptors — is necessary to
help answer questions about how rapidly information carebably delivered via diffusion and also suggest
signaling mechanisms (diffusive or otherwise) which caegdicitly sought (or ruled out) by experimental
biologists.

For instance, understanding the capacities of diffusiannkls could illuminate known phenomena in
tissue development such as the occurrence of repeatahiptatiwundaries amidst a more gently varying
spatial profile oimorphogeniqshape inducing) signaling agents [88]. The usual expiamatf such behav-
ior is that cells are endowed with special processing céipabi(particular thresholds and nonlinearities,
for instance [88, 89]). In contrast, a communications thewralysis provides that either the appropriate
information can be reliably delivered to cells in the regaispatially specific manner or it cannot. Thus,
communications theory may help illuminate the surprisioiguistness observed in most developing systems
even amid the tangle of known and emerging microbiologiedhitl about cell behavior. That is, even the
complex “black boxes” that are cells are subject to the dedagssing theorem. Without the right informa-
tion at the right time in the right place, no amount of progggsan make development reliable.

Consider then that tissues form communities of interconioatimg cells — intricately organized three-
dimensional structures from bacterial mats to mammalidthelm [90-93]. How do such ensembles main-
tain structure and function even under environmental ta8ult is well known that many signaling agents
and associated receptors are not “orthogonal” in that gotecenay bind more than one type of ligand.
Indeed, such “cross-talk” between receptors and ligan@shallmark of signaling networks. Response
overlap implies signal interference that could disrupnalg which convey architectural information. Or
perhaps overlap enhances signaling through multi-celperaiion. By investigating the network informa-
tion theoretic bounds [84] on what cells and groups of cells possibly say to one another, we can narrow
the possibilities for system connectivity, and perhapshemticipate connections between components of
multi-cellular communities that may have previously bebaaured or overlooked.

Furthermore, examining communications issues in a maltitar biology context might also pro-
vide new network information-theoretic insights espédgiébr such modern contrivances as sensor net-
works [94-96] which arguably operate under similarly sevenergy constraints. Specifically, network
information theory is as yet only partially understood andltircellular biological systems have had ages
to optimize performance under the common constraint ofggnesage. Cellular systems of decision mak-
ing components exhibit remarkable resilience - a tradestfivben efficiency and persistence, constancy and
change, and predictability and unpredictability. Undemmal circumstances, an adult tissue tolerates distur-
bance without collapsing into a qualitatively differerdatstand can withstand shocks and rebuild itself when
necessary. Perhaps in trying to understand how cells comeaterwithin a community, some biomemitic
opportunities for human-engineered systems could becwiders.
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3.2 What Do CdlsTalk About?

Suppose we can obtain a reasonable understanding of boarglgrmaling rates between cells in a multi-
cellular community. A number of vital structural/functmnquestions immediately follow. For instance,
in a mammary epithelium, how does a given cell know it is pdrar acinus and needs to secrete milk
into the lumen and not in the other direction? How do genaslhi malignant breast cells know to behave
“normally” when placed in an appropriate three-dimensidisgue microenvironment [93,97-99]. These
sorts of questions — of which there are many examples frortebaktmats to organisms with billions of
cells — are at heart, the developmental biology questionw laa “complex” structure elaborated from a
single cell and maintained and how is spatial/architetiafarmation conveyed.

Much effort has been devoted to the study of pattern formadiod the emergence of complexity in
biology (reviewed in [88, 89, 100-102] and for a recent expental and computational study of tissues
see [103, 104]). Nonetheless, we know of no study that asks rate of information flonbetween cells is
necessary to allow cells to develop and maintain a complestioning structure. Specifically, cells assess
their environments, and based on incoming information nigdasions A large (and rapidly increasingly)
number of these decisions can be probed experimentallyg uswdern biological methods. Via source
coding (including rate distortion theory) these decisicas be quantified to some number (d2)yof bits, a
variable which depends upon the circumstances.

TheseB bits might require delivery by some deadlifie(as when a cell has to decide its fate) or may
need refreshing at some average it order to perform one a” possible behaviors. That is, cells of
an organism respond to their environments by behaving ferdifit ways. Furthermore, even in a strictly
developmental context after fate has been decided, isbtats express themselves differently than when
they are part of a community and over time [92,105]. So, imfation is constantly collected for appropriate
decision making, at least in healthy cellular communiti€bus, simply speaking, the rate of information
flow into a cell must be at leag® /7" where a deadline must be met, B3 when a series of behavioral
decisions must be made.

A communications framework then allows us to ask whethesttpealing rates culled from the physics
of known biology comport with the spatially-specific limitsposed by the signaling physics or whether
other mechanisms must be invoked. Can a given cell possbbive the information it needs under given
channel assumptions or does the information required lgreateed the system capacity? Such studies
will almost certainly enhance understanding and suggesiawvenues of exploration in experimental multi-
cellular biology.

There are also specific biological questions about tissh@slénd themselves to a communications
theory framework. Does the lowest information rate needddithfully represent a message source (source
coding) and the highest rate of reliable message deliveaouth some medium (channel capacity) change
during the generation (development and morphogenesishitenance (regeneration and replacement), and
decline (aging) of the biological system? For these digpdissue-level processes, how much information is
necessary to approximate an information source under sael@icriterion given that the complete source
specification is extremely large (rate distortion theory§zhe progressive decline in cell and tissue form
and function seen in aging a consequence of a reduction ifickhlity of transmission, increasing lack of
knowledge about a message (capacity diminution), inghititencode a message compactly and losslessly
(source coding)? Do these phenomena vary from cell to cellldxhe loss of resilience of a multi-cellular
system with age and/or in disease be due to the transmiskinfoomation with increasingly higher levels
of loss and/or error? Is a diseased multi-cellular systemwhere the signal space is distorted through
mutations in signal-producing genes?

It is also possible to pose the abstract question. Rathergbaking to explain how known biology
achieves complex structure, we might ask in general whaimairinformation flows are necessary between
identically programmed units which must cooperate to becamarbitrary structure. Is there some minimal
information flow necessary to support such a given functidifat are the requisite signaling methods? This
guestion is similar to one asked in “amorphous computingl’ @attern formation studies [106,107] but ours
will be an information-theoretic as opposed to computati@pproach.
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3.3 What Can a Cell Say?

Diffusion of signaling agents through some medium is a ubogs form of intercellular communication.
However, manufacture of signaling compounds can be metaltlgl costly. A moderate-sizetl)0-amino
acid signaling molecule requires approximatéy) ATP to manufacture [108] which is significant even in
comparison to an elevatédx 10* ATP/sec total energy budget during cell replication (E.iCd9]) since
many signaling molecules must be produced. Furthermoeergbeptor structures sensitive to signaling
agents also require energy for upkeep and operation (aréeahly coming to be appreciated recently in
telecommunications systems with modern sensor networis. [9

Interestingly, communications theory suggests that thquilly of chemical signaling in multi-cellular
biology is not accidental. It can be shown tligcribed-mattercommunication — of which chemical sig-
naling is an instance — is often stunningly more energy4efitdthan electromagnetic (or acoustic) methods
in a surprising variety of contexts [110-112]. Notably, lsumsessaging is not limited to passive diffusion
methods in biological systems but is also prominent in actirms. For instance, tactile communication
through filopodial extension [11], cell migration [88, 10&#}d perhaps most obviously, sexual reproduction
all constitute forms of inscribed-matter messaging. Eacfuires energy not only to compose the message
but also to deliver and to interpret it as well. With enerdijcegncy as a driver for many aspects of evolution,
the various forms of inscribed-matter messaging in mutivtar systems thus warrant close inspection.

We can begin by asking a simple and precise question. Howllyapan information be reliably sent
over adiffusion channé& Here we examine two facets of the problem which we thinkideogome insight
into how cells may (or may not) communicate over distanceomplex tissues and organisms.

The diffusion equation in an isotropic medium is

dp _ 2
E—DV p (5)

whereD is the diffusion coefficient, a measure of how rapidly a diffig species can flow as function
of concentration gradients$/(p). Equation (5) is linear and time-invariant, so assumingatde-separable
solutions we obtain a complex exponential fundamentaltsoiu

g(l’, Y, z, t) - e_k2t€j v kﬂ%Dxe] k’%’Dyej\/k’g_’Dz (6)

2 iti ility in ti 2 12 12 | i
wherek? is some positive constant (for stability in time) akio+- k, +k; = k. Linearity allows us to form
p(z,y, 2,t) = / dk Rk, by, by )e ¥ tedkaV D eikuV Dy pikeVD2 g ke df;, )
Z(k)

for some complex functio® k.., k,, k.) whereZ(k) is the region wheré? + k. + kZ = k2.

For simplicity, consider one dimension and a specific ihitiandition of p(z,¢ = 0) = §(x) which
corresponds to an impulse of signaling agent concentréatjented into the system at= ¢ = 0. This leads
to

5(x) = / R(k)e? VD gy,
which impliesR(k) = % Thus, the impulse response is the well-known Gaussiansiliif profile

1 2
e 1ty (t 8
) (t) (8)

h(z,t) = / R(k)e ¥ tehVDr gl —

g

whereu(t) is the unit step function. The Fourier transformidf:, ¢) has magnitude

1 _ [ mfa?

Rose & Mian 8 NSF CDI08



A Communications Theory Approach to Morphogenesis and Architecture Maintenance

and characterizes the effect of a time-varying point-seatcthe origin on a receiver at positien

To explicitly compute channel capacity, a few more stepsna@essary — receptor noise levels must
be determined (see [113-115] and section 3.4 for detaild)cansidered in light of signaling molecule
manufacture energy budgets. Furthermore, we have dei#heignored issues such as signal degradation,
active transport, mediated transport or multiple intérgcsignaling species, to mention only a few [108].
Nonetheless, the forms of equation (8) and equation (9kHieg. Specifically, we see as with any “wireless
channel” that signal strength decreases with increasistgriter. However, this diminution is particularly
severe —the impulse response of equation (8) is doubly exp@hin distance: as opposed to the power law
dependence of an acoustic or electromagnetic system. Iicagdequation (9) shows that bandwidth also
decreases exponentially with distance. A diminution ofdveidth serves to decrease the number of degrees
of freedom available for communication and even furthereeges capacity with increasing distance. These
features can be seen in FIGURE 2 for step applications ofkighbiologically relevant diffusivitied,
distances, and signal application timés in seconds.

c 10 T
o
g = 135001
Figure 2: Normalized signal concentration ver- %10 1 el 3
sus distance from a steadily applied point source 2 ‘\\
(in three dimensions).D = {107%,1077,107%} 8¢ . S 100
cn? /sec. Typical eukaryotic cells diameters are on S o - N
the order of tens of micrometers:.). Notice sharp ~ .N'° ¢ 10 N3
decrease in concentration with increasing distanc & LT ]
and with shorter application timE = 1s and smaller Sl \\10 \ E
diffusivities, D. Ordinate:p(r, T')/p(10um, T). st: N
10 100 1000

Distance, r (micrometers)

A communications theory lens suggests that the channeigshigisavily penalizes long distance com-
munication via simple diffusion. Furthermore, imposingnfmral structure on signals carries a significant
penalty as well. This latter point speaks directly to thestjo@ of whether gradients convey information via
time-variation [88,89] and implies that if simple diffusids the transport method, then static or very slowly
varying gradients may be the most likely signaling methagneover relatively short distances. We must
close, however, with a caveat. Unless signaling agentsgatéered” with antagonists (as in synaptic clefts)
or the signaling interval is long enough to restore pre-aigg conditions, the diffusion channel is far from
memoryless. Thus, the implicit potential for capacityreasing feedback must be considered.

3.4 What Can aCdl Hear?

The cascades of cellular events that can be evoked by sigraldaunting in both their complexity and
variety [116]. However, signal cascades are themselvesruontations channels which convey degraded
versions of the information present at the cell's bound@ihus, by considering only the information present
at the initial receptor sites (some of which may be interpakpecies which diffuse through the cell mem-
brane) and applying a communications theory perspectizethe coding, channel and data processing
theorems) we can reasonably agkat can a cell possibly hear?

The fundamental event at a ligand-receptor complex is thditg of the ligand. At the molecular level,
the process is stochastic owing both to diffusion and to itiembt-receptor kinetics. Furthermore, a given
ligand may have multiple binding states at a receptor. Heweor simplicity we will assume receptor
occupation is a binary random variab¥e and that the probability a receptor is occupied is some mono-
tone increasing function of the ligand concentratipi113—115]. The exact relationship betwegeand p,
depends on a number of factors, including the ligand-rezdphetics, which could in principle be calcu-
lated or measured. Further, we will assume that if a celi€af¥ receptors, sampling at some time instant
providesN iid binary random variableX’; [115]. Finally, assume that the receptors are indistirttalite so
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that the effective information variable accessible to thkis the number of bound receptor sit&s which
for large N is approximately Gaussian with meafp and varianceVp(1 — p).

To obtain a measure of the amount of information that coudsbttétically be conveyed through the
ensemble ofV receptors, we seek the maximum mutual information betwgeand theX;. However, if
we assume is an invertible function op, we can equivalently seek

1
fr(p).Ep ( ) fr(»).Ep (K) Py g( p(1—p)) (10)

where fp(p) is the input distribution (invertibly related @) and&p is an “energy constraint” op related
to the signal manufacture cost of producing a ligand coma#ah p, at the receptor array. We note that the
signal might be the particular ligand, but it might also beesamyme which affects the native concentration
of the ligand local to the target receptors.

For simplicity, we first ignore the energy constraint on sigmanufacture and assume that any distri-
bution onp is admissible. Foyfp(p) uniform andN large, the marginal distribution ofi is almost exactly
uniform itself. Thus, we can say (approximately) that

1
C >log N — / %log (2meNp(1 —p))dp = % (log N —0.837) = <% logo N — 0.6> bits. (11)
0
For a relatively largeV = 10° receptors [115,117,118], a sequence of measurements canidy abous
bits of information per measurement on average. For a margeteativeN = 1000 [113], over4 bits per
measurement is theoretically possible.

If the ligand concentratiop, could be changed as rapidly as desired and the interval batmeasure-
ments were governed only by receptor activation/deadinaimes, perhaps many observations could be
made per second per signaling agent. (Nicotinic-cholicaegeptors, for instance, operate on a tens of mil-
liseconds time scale [119,120].) Thus, the incoming datatmaa cell could in principle be hundreds of bits
per second. In light of this observation, it is easy to imagsimgle cells as information-gathering engines
— as may have been useful in a free-foraging evolutionary, pasnay have been re-used in multi-cellular
developmental contexts, and perhaps as may be used by, aaynamt cells that rip free of their moorings.

However, in a multi-cellular system, the maximum theowmdtinput rate is only a part of the whole
picture. p, is driven by other cells and though the data rate presengjtest surface receptors can be theo-
retically large, our previous consideration of the difusichannel suggests that driving signal concentration
levels rapidly over distance can be metabolically prohibit What may be a severe mismatch between
sending and receiving capabilities in multi-cellular gyss is interesting and will be explored.

Ultimately, deriving the channel capacity will require 6sing the loop” by explicitly modeling(p).

A direct approach is possible and will be pursued, but theltesnay depend strongly on specifics of the
ligand-receptor kinetics among other highly variable aadhpps difficult to isolate and measure parameters.
However, as in other areas of communication theory, it isrofiossible to find useful bounds under basic
physical assumptions — such as receiver noise temperatdr¢ha worst case nature of white Gaussian
processes for additive channels [83,84]. Thus, part of aukwill be investigation of bounds and bounding
processes for the biological noise processes we consideth-as receptor noise.

3.5 CedlsAsRelaysand Routers

If diffusion has limited range as a signaling method, thew lo cells many cell-lengths away intercom-
municate in spatially precise ways? The most obvious altam mechanism to passive diffusion is active
mixing. However, such mixing is usually chaotic which carstdey spatially specific information neces-
sary for tissue architecture development and maintenafAamore spatially stable alternative might have
individual cells relay information by up-regulating theiroduction of signaling compounds in response to
incoming signals. However, up-regulation of a signal cibuists processing and by the data processing
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theorem, the information content of the up-regulated digaa only degrade the input information. This
leads to a version of a well-studied communications probletine relay channel. We intend to formulate
the relay channel in a multi-cellular communications cahéand also to identify instances of relay channels
in biology [121].

Relay channels figure prominently in human-engineereasyssuch as sensor networks [94—96]. Like-
wise, distributed sensing can be a primary function of sassués and systems (inflammatory response,
immune system). Via the Sleppian-Wolf theorem [84] infotiora theory provides a basic analytic frame-
work. However, from the perspective of implementation, shaly of such biological systems in general
and paracrine, autocrine and juxtacrine signaling in palidr could reveal new ways of thinking about the
sensing problem. Similarly, the detection and responseNld Bamage is both a cell- and tissue-level phe-
nomenon, so exploring the signaling involved in this caltiftnction may provide insights about the design
and construction of resilient systems — as one would like@enetworks to be.

Relaying might also be directed as opposed to diffuse. Ehdhé spatial differentiation seen in devel-
oping organisms suggests the possibility that cells carasel signaling agents anisotropically to produce or
enhance spatial specificity. The idea that cells might beldfectively agoutersis at once both obvious
and exciting. Obviously cells have structure and orieatathemselves. A hair cell has stereocilia at one
end and neural contacts at the other. Neurons have axonseaddtds. Mammary epithelial cells secrete
milk on only on the lumen side of an acinus. However, the moti@t an individual cell (or a small group)
during morphogenesis might receive incoming signals anterimformation in spatially distinct ways like
a router seems an interesting line of research to pursue.

Also, keeping an open mind about information transfer meisimas is certainly necessary. For instance,
it is known that sense organ precursor cells in developingsBphila can forge direct long range contact
with other cells by extending filopodia [11]. Simple diffasi and cell-cell relay methods have been ruled
out experimentally. This delightfully direct method of comanication is extremely spatial-specific, but at
the metabolic cost of constructing and extending the filigpoddditionally, once this possibility of gross
motion in the service of communication is broached, a nunatb@ther phenomena spring to mind. The
epithelial-mesenchymal transition (EMT) is a cellular gnam characterized by loss of cell adhesion and
increased cell mobility that is highly spatially specificddagssential for numerous developmental processes.
The initiation of tumor metastasis, a process that invoimgasion, has many phenotypic similarities to
EMT, including loss of cell-cell adhesion. Since naturegkslem frivolous with energy, it will be interesting
to analyze these and other phenomena as communicationgempobnder energy constraints.

3.6 A Signal Spacefor Structural Information

One of the key problems in biology is how a genetic code (alith initial conditions imprinted on an
ovum) is reliably elaborated into a complete organism. H@seas scientists and engineers, we are often
presented with the reverse problem — to determine the anafunformation necessary to code specific
structures — and it is tempting to simply apply that familmethodology. Thus, standard signal space
methods might be employed to represent any tissue volumeh ms Fourier transforms, wavelets or any
number of other orthogonal methods might be used to reprédseimage in a photograph.

Communications theorists often seek “minimal” repres@ma subject to some distortion measure.
However, discovering such representations among the tinfifiipossibilities for even “simple” problems
like image coding seems more art than science. It seemsiapeataunting in the context of directly
discovering the tissue-structure component of genetiesodo instead, we initially plan to view known
biology-driven approaches through a communications thkwrs, and then examine other possible repre-
sentations of structure based on known physics and obsbeleavior [102].

As one example, thenorphogenic gradienits an accepted (if somewhat mysterious) mechanism in
developmental biology whose discovery garnered the 19%&Nerize in Medicine [88]. The basic premise
is that during development, external gradients of siggatigents horphogengsignal the clump of cells
which comprise the blastula and cause it to differentiate warious precursor structures as the first step
toward gastrulation. The implication is that the cells rsately impose their own morphogenic gradients
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on the developing embryo and the process drives formatidheofnature organism. A reasonably large
literature has developed around this basic idea in the mettieal biology literature [89]. However, to
our knowledge, there is no morphogenic gradient analogdmtition of signal space — a corresponding
“structure space” accessible using morphogenic gradiesitthe basic operator. Thus, it is unclear what
range of structures can be elaborated by morphogenic gitadigen in the absence of signaling noise.

We will therefore seek suitable decomposable mathematigaksentations for structures. Previous
work in this general area [100, 122] has had limited succasg,a brute force approach (using forms of
vector quantization, for instance) might also be attemjmigidwould have the same problems as finding
suitable basis sets for images. Thus, one of our first iny&tsdins will be to consider models based explicitly
on morphogenic gradients and known developmepitahitives such as proliferation, migration, folding,
branching, apoptosis and the like [102]. Of course, any@gupr that includes potentially iterative non-linear
operations (such as folding) literally invites chaos. Heerethe incredible reliability of development in
biological systems gives us hope that should there be cli@m® must also be some mechanism which can
be included in any candidate “structure space” approadftrakeep incipient chaos tightly in check. That
is, successful development provides a clear existencd pfaeliable code-to-structure transformations —
even though almost certainly a dash of genetic chaos drixastn.

The true utility of a structural space, however, lies in howan be used to quantify the information
content of structures. That is, we suspect that analogotisetalevelopment of communications theory,
determining some space of “elaborable structures” alortf widecomposable mathematical description,
and considering it in the context of intercellular signglicapacity, should allow us to express the infor-
mation necessary to reliably encode structures and aid oderstanding of the mechanisms by which
multi-cellular systems could recover from environmentedults. Thus, whether we succeed in developing
a powerful structure space method or not, we plan to applyramanications theory lens to the candidates
we do consider.

3.7 Scaling

Although cell membrane-bound ligand-receptor channedsraportant in the exchange of information be-
tween the interior and exterior of cells, ligand-receptomplexes perform similar functions when present
in the membranes of intracellular organelles such as thkeasicmitochondria, lysosomes, and endoplas-
mic reticulum. While there is only one nucleus per cell, ¢harany more copies of the other organelles.
Thus, the ideas we develop for intercellular signaling alithost certainly have application katracellular
signaling as well. Likewise, the assemblages of tissudsctiraprise organisms are also communications
networks as are populations and ecologies. We view suchigness potential targets of opportunity de-
pending upon the success of our multi-cellular inquiriebatTis, the potential for communications theory
as a scale-spanning organizing principle deserves atdeast attention as part of this study.

3.8 Mining the Biological Info-Space

Standard biophysical, biochemical, molecular biology @&etl biology experimental techniques permit
many aspects of the structure and behavior of receptorsrteesured and monitored over time (the binding
of ligands, conformational changes, the generation ofreomessengers, etc.). New technologies are push-
ing the boundaries so that, for example, behavior can beurezhat the level of individual cells as opposed
to populations of cells. Clearly the potential applicatafremerging techniques to our problem area is excit-
ing and we will keep a close watch on such methods and relegantts. However, direct experimentation
is not the only avenue open to exploration of biological ayst.

For instance, consider the following questions: Is therimfation conveyed by one mouse cell to another
mouse cell the same as that transmitted by one human celbtbeaf? Within a given species, what infor-
mation does one cell type convey to another? We can attenapistwer the first question using comparative
genomics, for example, by utilizing readily available wdhgenome and proteome sequence data [123—-126]
to determine whether the mouse genome encodes the samentyjoe mumber of signaling molecules as
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the human genome. The second question can be addressedursitignal genomics, for example, by
performing retrospective analyses of transcript profililaga housed in public repositories [127, 128] to de-
termine whether a human mammary gland epithelial cell esga®the same type and/or number of signaling
molecules as a human brain cell. Such questions can be at¥oer‘normal,” “senescent,” and “tumor”
cells as well as cells treated with drugs or other agents.igeaidsed earlier, ligand-receptor interactions are
key to intercellular communication but under some circamegs, one or the other but not both components
of the system may be expressed by a cell type. For examplanaoiation may be subverted (or perverted)
if a given receptor is present in the cell membrane but threntigs not expressed.

A ligand-receptor complex does not exist in isolation bugubject to numerous control and feedback
mechanisms from channels of the same or different type.i®tgsdources dedicated to signaling and other
molecules, pathways and networks [70-72,129-132] wolallis to collate and organize information about
signaling mechanisms and agents. Web-based text anabydss [133—135] should facilitate our ability
to distill existing research and formulate general coreeipat will allow us to start addressing concepts
such as channels and signal space in realistic ways. Althsoghe mutations in signaling proteins may
inactivate the molecule so that it is unable to function prbp others may alter its effectiveness to transmit
a signal without loss and/or error. For example, the abdity receptor to transmit information may be
enhanced, diminished or conditioned on some other facBy&xamining the basic biology of engineered
and naturally occurring [136] mutations, we may be able toowar the relevance of our communication
theory ideas to health and disease.

In addition to the public and Web-based resources and dsalmaentioned above, we will perform more
sophisticated analyses of molecular sequence (proteir, RNIA), molecular profiling (gene expression),
biomedical text and organismal phenotype data as and wheafedeusing a variety of software and tools,
including many with which we are already familiar [32-50].

4 Previous Applications of | nformation Theory to Biology

There are a variety communications/information theoryiagpons to biological systems and the literature
is far too broad to reasonably survey here. Nonethelesgeins useful to describe general classes of
previous work and provide examples so as to place what weopeojp better context. To start, the broadest
application of communications theory to biology is somewtiaermodynamic” in nature and applied at
the molecular/genetic level. Such work (e.g., [137-14¢pidally draws quantitative analogies between
chemical energy changes and system information gain or logontrast, another class of work considers
nearly explicit communications analogs in biological syss (e.g., [142—-145]).

The neural transmission and storage of information (adiggbby [146, 147]) has also been of great
interest. Neuroscience has perhaps the longest assacigitio communications theory, perhaps because
information theory and the physics of neural transmissi@mewroughly simultaneous intellectual break-
throughs [81, 82,148-152]. Recently, communicationsrihean the form of model parameter estimation
— has been successfully applied to studying brain functi&3f155], allowing researchers to infer behav-
ioral states from multiterminal recordings, a holy grailsoits. Sensorineural transduction and coding has
also held a particular fascination for communications rdgsés. Probably the most relevant to our pro-
posed work is the study of source-channel matching donenisosg transduction (see [156] for a review)
which examines the behavior of sensorineural systems imfannation theoretic way without trying to
force mainstream communications theory onto biology. T$atometimes channel-matched but uncoded
transmission is optimal [157] (or near-optimal which sedangnore important to living systems than true
optimality [156]).

Arguably, the most successful application of communicetitheory ideas to biology has been genomics
research [141]. The inherently digital representationnébrimation in molecular sequences (DNA, RNA,
protein) allows comparisons across the entire biome, aifeathich can be of clinical significance. For
instance, a recent information-theoretic analysis wafopaed to measure the joint effect of a high fre-
guency germline genetic variant of the p53 tumor suppregatiiway and gender on clinical cancer phe-
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notypes [158]. Though we will certainly make use of such l@emide associations as part of our work,
our approach is perhaps more literal and based on the phyfsioteraction as opposed to abstractions of
interaction.

The work closest in spirit to what we propose is a recent safdshemotaxis — the ability of a motile
single-celled organism to seek greater concentrationataemts [159,160]. Using an information-theoretic
rate distortion approach [160] seeks to understand thesidesi cells make (in terms of chemotactic mo-
tion) using available concentration gradient informatidrhe underlying premise is that the environment
communicates with the cell through variations in nutriesi@entration via surface receptors. This commu-
nication results in readily measurable cellular decisiah&reby cells move toward greater concentration
of the sensed nutrients. The marriage of mutual informagioch rate distortion theory along with channel
physics and measurable response pursued in [160] is exaetlgort of approach we hope to use in our
proposed multi-cellular studies.

5 Research Goals

We can now formally state our research goals:
e Study the fundamental communications physics of inteutagllsignaling
e Derive capacity/distortion bounds for intercellular commication
¢ Derive capacity/distortion bounds for signaliagrosscell membranes
e Explore biological implications of communications-thetic bounds
e Exercise theory on web-mined biological data
¢ Study intercellular information flow as it relates to tissnerphogenisis, maintenance and aging
e Explore biomimesis for distributed sensor and auto-asgengiworks
e Explore the scaling properties of a communications theaméwork

We also expect to identify appropriate experimental prajians and techniques that can be used to not only
test our results, but that could form the basis of subsedaeyer efforts in which communications theory
is used as an explicit tool for biological system explonatibAlso see section 7.)

6 Research Impact

Assuming success, the broader impact of developing anteezommunications framework for biological
systems which can both explain and predict general muliHae network behavior is difficult to overesti-
mate. Certainly such a framework would be pivotal in quairti the process by which genetic codes are
translated into organisms or understanding disease and agiinformation network disorders. Likewise,
distributed specification and assembly of robust strustimeengineering as well as a multitude of other
applications in biology and engineering are clearly pdesib

We expect this work will interest both communications th&srand multi-cellular biologists. Likely
communications theory journals include IEEE Transactisunsh adnformation Theoryand Communica-
tions or the more biologically orienteBiomedical EngineeringndSystems Man and Cybernetidskely
biological journals includé€ell, Developmental Biologylournal of Theoretical BiologyBiophysical Jour-
nal and widely-read high-impact multidisciplinary journalsch asPL oS Biology, Nature andScience.

Finally, it is worth mentioning that we envision this propbss the first in a series under the CDI
program which builds a moderately large, diverse and cobdsam of communications theorists and ex-
perimental biologists. That is, the ultimate goal is to herkpate a new scientific discipline which integrates
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biology and communications theory via biophysics. Thig fitep will explore the subject and lay solid
theoretical groundwork which can then inform and enhancet®iological experimentation.

7 Educational Impacts

As a general rule, biologists are not trained in commurocatitheory, and communications theorists are not
trained in biology or biophysics. In fact, the classicaht&lnship between biology and physics — of which
communications theory is a descendant — has arguably beeof onutual distrust:

“ ... but I happen to know that most biologists consider thggitists’ obsession with certainty
and correctness to be exasperatingly childish and evidefickeir limited mental capacities.
Physicists, in contrast, consider tolerance of uncertatotbe an excuse for second-rate exper-
imentation and a potential source of false claimR. Laughin,A Different Universe [161].

Only relatively recently have portions of communicationsl énformation theory begun to take hold on the
larger biological research enterprise, but as previousiyugsed, the most prevalent applications have been
statistical and inferential as opposed to as explicit as mwpgse — where interactions between biological
elements are modeled as information flows and the actioes thk cells as formal decisions all quantified
using the machinery of communications theory.

Should communications theory prove an effective orgagizirinciple for studying multi-cellular bio-
logical systems, the ultimate goal would be to teach muliuéar biology from a communications theory
standpoint [137] andice versa— that is, make communications theory part of the biologadication
mainstream. There would then be an obvious need for a cohasttidents, graduate and undergraduate,
whose training explicitly spanned the divide between lggland communications theory. However, with
a single grant of this size, it is not credible to claim angthas large as a program or “cohort” could be
produced. Nonetheless, we envision this grant as the fiessgries and have therefore thought reasonably
carefully about the educational component writ larger thdew supported graduate students.

Atthe undergraduate level, Rose will develop a senior lelegitive course on biological communication
geared toward communications theory concentrators ame graduate level he and Mian will knit together
offerings from biology and communications theory to depedocoherent course of study in multi-cellular
biological communications. We also plan to develop an dhiiory course in biological communications
theory for biologists — most likely as a seminar at first — viahéan serve as a cross pollination vehicle for
biologists and communications scientists. As part of tiffiere Rose plans to conduct what might called
“mini sabbaticals” during the summers with various develeptal biologists at key laboratories, not only
to gain first hand experience with modern experimental glhiological techniques, but also to understand
how best to infect young biologists with formal communioat theory concepts.

8 Resultsfrom Prior NSF Support

Christopher Rose has served as Pl and co-Pl on a number of previous NSF grét)sNCR-9206148
[162], CCR-98-14104 [163] and CCR-99-73012 [164]; (coRQR-9506505 [165], NCR-97-29863 [166],
ITR/CCR-00-85986 [167], ITR/CCR 02-05362 [168], NeTS-8834 [169], NeTS-0435370 [170] and
CNS-0716400 [171]. The work completed on these grants hdsesskd a broad range of problems as-
sociated with optimizing the use of radio resources in cominaiions systems. Call admission for wireless
systems was studied in [172—175]. Fundamental algoritlamsafging and registration of mobile nodes were
established in [176-187]. Recent work has been focused derstanding the U-NII [163, 188, 189], op-
portunistic transmission methods and associated delmertpcols [190-192], and developing interference
avoidance methods for a variety of communications probldi®3—220] as well as non-standard communi-
cations models [110-112,221,222]. The work described 1i]1s featured on the NSBiscoveriesweb
page. Most recently. Saira Mian and Rose collaborated on the exploratory grant CCF-070RZH, one
result of which is the material and approach of the curreoppsal.
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Coordination Plan

The PI (Rose) is a communications theorist with a backgranrmophysical theory and experimentation.

The Co-PI (Mian) is a physical chemist and biologist with @y computational biology background.

We both have experience deriving and applying mathematicalels of biological systems using a variety
of descriptive (phenomenological) approaches [22—-31] statistical machine learning (data-driven) ap-
proaches [32-50]. Our complementary skills are importaat,equally important is enough disciplinary

overlap to allow more fruitful collaboration than were a goomications theorist vaguely interested in biol-
ogy paired with a biologist vaguely interested in commutiicatheory. That is, the Pls speak a common
“technical tongue.”

Aside from obvious and necessary telephone and Internketbocoation methods, we also plan to meet
guarterly, face-to-face, to discuss results and plan sulese research. Some of these meetings (summer)
will include extended visits by Rose at Mian’s home instdant(LBNL) which is a primary nexus of activity
on the architectural aspects mammary epithelium in healhdésease. We suspect that the meeting format
will be short (i.e., morning or afternoon) workshops on tbhpits where interested parties could attend
and contribute if desired. Should this model prove esplgcilccessful and other researchers at other
institutions/laboratories wish to join the effort, largeorkshops might be planned.

In addition, we will build a Web site using Wiki software Meiiiki [224]. The project wiki will have
multiple pages and sections and serve as the main vehialie$oribing and disseminating the results of the
proposed research. Users will be able to freely downloa@rmxgntal/technical details, primary/processed
data, positive (and negative) results, and conclusions.

In order to facilitate collaboration and sharing among ttaqet personnel as well as with members of
the biomedical, scientific and engineering community andémeral public, other second generation web-
based communities and hosted services relevant to therchssdl be created, notably social networking
services (the building and verifying of communities of pleowho share interests and activities pertinent
to the proposed research) and “folksonomies” (collabeeatgging or the practice and method of creating
and managing collaboratively tags to annotate and catsgodntent). This seems especially important in
light of our desire to cobble together a community of redeens interested in applying communications
theory to multi-cellular systems as well as those seekingam how such techniques might be applied to
their own biological (or engineering) research. The wiki siipport registered logins with scoped adminis-
trative access. User groups will be utilized in combinatioth administrative scoping to ensure that project
personnel can edit and publish documents in the approéations of the site.

It should be noted that our focus is fundamental and exgoyatesearch at the interface of communi-
cation theory and multi-cellular biology rather than thenfialation of novel algorithms and robust software
implementing them. Thus, we will use open-source and fraedjilable tools, software, and resources for
any data modeling and analysis we might need to perform.&iwmiour aim is to submit results for pub-
lication in both high impact scientific/engineering jousas well as open access journals. In all cases, we
will make complete methods, software, data and resultdadtaias supplementary material.
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