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Abstract—Consider observation of a system with initial state
x(0) through some signal r(t) corrupted by white noise of spec-
tral height N0. When the system is cast in state-space form and
the observations projected onto the relevant orthonormal bases,
completely unbidden, two well-known wireless communications
tropes emerge: a colored noise channel and a multi-access channel
wherein elements of system state are associated with different
“signatures” defined by the system. That is, from a mathematical
perspective, the system could communicate to the observer in
a well-understood way. Taking these tropes at face value, we
investigate the efficiency of conveying a state vector x(0) through
classical estimation to that wherein a “demon” manipulates an
identical initially-at-rest system so as to communicate x(0) to
the observer on successive epochs (channel uses). An energy
constraint on the initial state E

[
|x(0)|2

]
= E is assumed, and

the demon’s signaling efforts over the ensemble of epochs are
constrained similarly. In all cases, the demon conveys the x(0)
with less error – by orders of magnitude for moderate signal to
noise ratio E

N0
. Furthermore, the demon scenario results in some

number of reliably-conveyed bits of information and imposes
crisp limits on relative uncertainty of different state element
estimates. In fact, the form of these limits is identical to that of
the quantum mechanical Uncertainty Principle (although there
is no requirement of a momentum-position analog). Nonetheless,
the appearance of these tropes raises the question of whether
communication and information theory have something deeper
to say about physical interactions and the cacophony of system
voices in conversation.

Index Terms—state estimation, uncertainty principle, multiple
access, colored noise

I. INTRODUCTION

SYSTEM state estimation is a classical problems of control
theory and the measure of quality is often estimator

variance. Here we will see that the mathematical description of
a classical physical system, when cast in a state-space/signal-
space form, results in two telling communication theory tropes
– colored noise channels and multiaccess channels. Under this
communication theory lens, crisp limits are imposed on the
amount of information that can be reliably conveyed between
a sender and receiver under transmission energy constraints
and these limits beg an appropriate comparison to the those
imposed by classical estimation techniques. The comparison
will suggests system state measurement can be viewed as
listening to a cacophony of simultaneously emitted “voices”
analogous to system state eigenmode mixtures. Furthermore, if
the system wishes to convey the vector x∗ where E

[
|x∗|2

]
=

E , then it is best to employ a “demon” with total energy budget
E which sets the system state at the start of multiple sequential
measurement epochs (analogous to channel uses) rather than
setting the initial state of the system to x(0) = x∗ and using
classical minimum mean square estimation methods.

In addition, the form of the estimation uncertainty pro-
duced by the demon is mathematically identical to that of
the Uncertainty Principle – the product of the estimation
specificity (variance) is a constant – although the requirement
of momentum-position-like eigenmode pairs is unnecessary at
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Fig. 1. Spring/Mass “Slinky”

the macroscale. Whether this result is simply incidental and
amusing or says something deeper about the limits of what a
given system can “tell” us about “itself” seems worth further
exploration.

II. MODEL DEFINITION AND ANALYSIS

Consider the Hookean spring and mass system of FIGURE 1
in which a mass, connected by a spring and a dashpot/damper
(dissipative element) to a fixed point, slides on a frictionless
surface. F (t) is a force applied to the rightmost mass and the
observable is the rightmost mass position, r(t) = x(t) +w(t),
where w(t) is an observation noise process, assumed Gaussian,
white and zero mean for simplicity. In this cartoon we assume
the mass, spring, dashpot and anchor boundary never touch, so
the system is linear and completely described by the following
equations:

ẋ(t) = Ax(t) + BF (t) (1)

r(t) = Cx(t) + w(t) (2)

In the case of FIGURE 1 we have

x =

[
x
ẋ

]
(3)

with x being the position of the mass so that

A =

[
0 1
− k
M − b

M

]
(4)

B =

[
0
1
M

]
(5)

C =
[

1 0
]

(6)

Equation (1) and equation (2) comprise the usual “state-space”
description of a dynamical system that can be derived from a
Hamiltonian/Lagrangian or from first principles (i.e., F = ma
and F = kx) [1]–[3].

Using fundamental state-space linear systems methods we
have a state transition matrix

Φ(t) = eAt (7)

which is composed of linearly independent functions {ψn()}.
Assuming A is invertible, the ψn(t) could be independent lin-



ear combinations of eλnt where the {λn} are the eigenvalues
of A. In the undriven (also called homogeneous) case with
F (t) = 0 and no noise w(t) we then have

r(t) = x(t) = Cx(t) = CeAtx0 =

N∑
n=1

an(x0)ψn(t)

where x0 is the initial state of the system.
Now suppose we observe r(t) over [0, T ]. In general we can

derive an orthonormal basis {φn() } on the interval [0, T ] by
applying Gram-Schmidt [4], [5] to the {ψn(t)}. We can then
project r(t) onto the basis functions (which we will assume
real for simplicity) to obtain

rn = 〈r(t), φn(t)〉 (8)

and define the matrix

Gn =
〈
eAt, φn(t)

〉
(9)

as the projection of the transition matrix onto basis function
n. We can then define the N ×N matrix Q as

Q =


CG1

CG2

...
CGN

 (10)

We then project the noise similarly

w =


w1

w2

...
wN

 (11)

where
wn = 〈w(t), φn(t)〉

Because the noise w(t) is assumed white, the covariance
matrix of w is

Kw = N0I (12)

where N0 is a constant and I is the identity matrix. In the
case of FIGURE 1, N = 2.

The end result of projecting observations onto an orthonor-
mal basis derived from the system eigenspace is

r = Qx0 + w, (13)

A. An Unbidden Colored Noise Channel

Suppose Q is invertible. We can then rewrite equation (13)
as

Q−1r = x0 + Q−1w,

and then
r̃ = x0 + w̃ (14)

Equation (14) represents an additive Gaussian colored noise
channel in communication theory where x0 would be the
channel input and w̃ is the noise vector, colored because the
covariance, Kw̃, of w̃ may no longer be a scaled identity
matrix (unless Q is unitary). In the context of communication,
one would use a sequence of different x0[1],x0[2], · · ·x0[L]
to convey information to a receiver through a sequence of
received vectors r̃1, r̃2, · · · , r̃L.

B. An Unbidden Multiaccess Channel

We can also rewrite equation (13) as

r =

N∑
n=1

qn(x0)n + w, (15)

where qn is the nth column of Q. Equation (15) represents
a multiaccess communication channel with user “symbols”
(x0)n and corresponding “signatures” qn. The relationships
between the signatures determine how strongly “users” (the
{(x0)n}) interfere with one another at the receiver. Thus,
the user signatures will be received with potentially different
strengths and how well a given user (eigenmode corresponding
to (x0)n) is “heard” at the receiver depends on its average
energy relative the others and the relationships between the
signatures.

Once again, in the context of communication, one would
use a sequence of different x0[1],x0[2], · · ·x0[L] to convey
information to a receiver through a sequence of received
vectors r1, r2, · · · , rL.

III. MMSE VS. “DEMON”-MEDIATED ESTIMATION

For comparison to the optimal MMSE estimator we will
posit a “demon” that uses the channels articulated in equation
(14) and equation (15) some number of times L with allowable
energy E/L per channel use on average. Note that the system
of FIGURE 1 is lossy owing to the damper/dashpot b, so we
can assume sufficiently long epochs [0, T ] wherein initial rest
is assured at the start of the next channel use. Therefore, the
energy input into the channel by the demon during channel
use k is E

[
|x(k)|2

]
≤ E/L where x(k) is the initial state set

(slowly to as avoid dissipative loss) by the demon. The total
energy used in communication is E . We then assume that in
the MMSE case, the initial state is set (again, slowly) to x(0)
where E

∣∣x(0)|2
]

= E . Thus, the total MMSE and demon
communication energy budgets are identical.

A. The MMSE Estimator

Suppose we wish to estimate x(0) under a minimum mean
square error (MMSE) criterion. Then the optimal MMSE
estimator is the conditional mean [6]

x̂0(r) = Ex(0) [x(0)|r] .

Assuming zero-mean Gaussian noise with covariance N0I,
and a zero-mean Gaussian prior on x(0) with covariance
Trace[Kx(0)] = E , the optimal MMSE estimate is linear:

x̂0(r) = Zr

where
Z = K{x(0),r}K

−1
r

because we have assumed zero mean w and x(0). The
estimator error covariance is then

Ke = Kx0 −K{x(0),r}K
−1
r K{r,x(0)}

Derivations of these well-known results can be found in a
variety of places (e.g., [6]–[8]). Now we need to adapt them
to the “physical plant” specified by equation (13). That is

Kr = QKx(0)Q
> +N0I

and
K{x(0),r} = Kx(0)Q

>



so that
K{r,x(0)} = QKx(0)

Thus,
Z = Kx(0)Q

>K−1r

and
Ke = Kx0

−Kx(0)Q
>K−1r QKx(0)

B. The Colored Noise Demon
We repeat equation (14) here

r̃ = x0 + w̃

Owing to the assumption of zero mean white Gaussian noise
w(t), the capacity of the colored noise channel is attained with
a Gaussian distribution on x0 and can be obtained through the
following optimization:

Ccolor = max
Trace[Kx0 ]=

E
L

1

2
(log |Kx0

+ Kw̃| − log |Kw̃|) (16)

The specific Kx0 that maximizes equation (16) is that which
renders Kx0K

−1
w̃ as close to a scaled identity matrix as

possible. To achieve this end, the eigenvectors of Kx0 must
align with those of Kw̃, and the energy E/L distributed among
those eigendimensions appropriately. This “waterfilling” or
“whitening” solution, and the associated maximum C is the
“capacity” of the communication channel in nats per channel
use (of duration T , the observation interval) [9].

Since we assume many channel uses, L can be large
which implies the amount of energy available per channel use
decreases. In this case, the waterfilling solution will place all
signaling energy along the eigenvector of Kw̃ with the smallest
eigenvalue [9]–[11]. The capacity expression of equation (16)
then reduces to

Ccolor ≈
1

2
log

(
E/N0

Lλmin
+ 1

)
(17)

where λmin is the smallest eigenvalue of Q−1(Q−1)> since
Kw̃ = N0Q

−1(Q−1)>.
For large L we then have the total amount of information

(nats) transferred as

Bcolor = LCcolor ≈
1

2

E
N0λmin

(18)

C. The Multiaccess Demon
We repeat equation (15) here

r =

N∑
n=1

qn(x0)n + w

which represents a multiple access channel with white noise,
signatures qn and “user” (or demon) symbols {(x0)n}. The
problem here is slightly different than the colored noise chan-
nel because demons associated with the {(x0)n} are assumed
independent and may also interfere with one another owing to
the correlation of their “signatures” qn.

Nonetheless, the problem is well known [12] and the (sum)
capacity of the multiple access channel is given by

Cmac =
1

2
log

∣∣∣∣QKxmacQ
> E
N0NL

+ I

∣∣∣∣ (19)

where Kxmac is a diagonal matrix with nonzero elements
(x(0))2n, n = 1, 2, · · · , N and multiuser detection techniques

could be used to decode the information sent by each demon
[9]–[12]. However, since from an information-theoretic stand-
point, equation (14) and equation (15) are identical (assuming
invertible Q) and in the multiple access problem we have less
control over where energy is placed in the eigenspace of the
noise, in general we have Ccolor ≥ Cmac. We will therefore take
a more simplistic approach of optimal single-user detection
(matched filtering) for each demon, knowing that the colored
noise case provides an upper bound on the sum capacity.
Assuming energy is allocated equally among the N demons
and Gaussian codebooks are used, we then have

Cn =
1

2
log

 |qvn|2 E/LN
N0 +

∑
i6=n q>nqi

E/L
N |qn|

+ 1

 (20)

and
C sum =

∑
n

Cn (21)

For L large N0 dominates in the denominator so we then
have the total amount of information (nats) transferred as

Bmac ≈ LC sum =
E

2NN0

∑
n

|qn|2 =
E

2N0
|qn|2 (22)

D. Distortion

Rate distortion theory [9] allows us to determine the min-
imum average “distortion” D achievable under some error
measure when the number of nats specifying values (symbols)
from a source is fixed to B. To be specific, for a univariate
Gaussian random variable X ∼ N (0, σ2) and a square error
distortion measure, the minimum distortion imposed by the
finite specification of B nats is given by [9].

D = σ2e−2B (23)

For N such i.i.d. Gaussian variables specified by a total of
B nats, the minimum distortion (total mean square error)
becomes

D = Nσ2e−2B/N (24)

IV. ERROR COMPARISONS

For MMSE estimation we will assume that x(0) is a zero
mean white Gaussian vector with Kx(0) = E

N I. For the colored
noise and the multiaccess channels, we will assume that the
message to be transmitted is drawn from the same white
Gaussian distribution with covariance Kx(0) = E

N I. Thus,
in both demon cases, the value of σ2 in equation (24) is
E
N . However, the symbols transmitted by the demon over the
colored noise and multiple access channels are assumed to
have a per-channel-use energy constraint of E/L.

A. MMSE Estimation Error

The error covariance for MMSE estimation is

Ke =
E
N

(
I−Q>

(
QQ> +

NN0

E
I

)−1
Q

)
(25)

and the total error is

εMMSE = Trace[Ke] (26)



B. Demon Error
By substituting equation (18) into equation (24) we obtain

the total error for the colored noise scenario over L signaling
epochs as

εcolor = E
(
e
− E

N0λmin

1
N

)
(27)

remembering that λmin is the minimum eigenvalue of Kw̃.
Likewise, by substituting equation (22) into equation (24)

we obtain the total error for the colored noise scenario over
L signaling epochs as

εmac = E
(
e−

E
NN0

|qn|2
)

(28)

C. An Analytic Example for N = 2

It is useful to derive a few analytic expressions to help with
later numerical calculations. Following equation (4) we have

A =

[
0 1
−a −b

]
with a, b,> 0 and real. The eigenvalues of A are

λ1 = 1
2

(
−b+

√
b2 − 4a

)
λ2 = 1

2

(
−b−

√
b2 − 4a

)
(29)

so that the state transition matrix is

Φ(t) = 1√
b2−4a

[
λ1e

λ2t − λ2eλ1t −eλ2t + eλ1t

aeλ2t − aeλ1t −λ2eλ2t + λ1e
λ1t

]
(30)

To evaluate the projections we could define a finite interval
[0, T ] large enough that at interval’s end, the system would
be essentially at rest. However, for analytic simplicity we
assume each observation interval (channel use) is [0,∞] and
then imagine using L → ∞ identical independent demon-
channels in parallel so as to satisfy the assumptions underlying
the channel capacity expressions in equation (16) and equation
(19) [9].

We can then choose (not necessarily real)

φ1(t) = −j
√

2<{λ1}eλ1t (31)

and via Gram-Schmidt obtain

φ2(t) =
eλ2t −

〈
eλ2t, φ1(t)

〉
φ1(t)

|eλ2t − 〈eλ2t, φ1(t)〉φ1(t)|
(32)

where | · | in this case denotes the L2 function norm and 〈·, ·〉
is the inner product.

We can then define α as

α ≡
〈
eλ2t, φ1(t)

〉
=

(√
−b+ <{

√
b2 − 4a}

)
(
−jb+ ={

√
b2 − 4a}

) (33)

and rewrite equation (32) in a slightly more compact form as

φ2(t) =
eλ2t − αφ1(t)

〈eλ2t − αφ1(t), eλ2t − αφ1(t)〉
(34)

In the next section we evaluate the analytic expressions for
an overdamped system with values chosen for analytic simplic-
ity. We also evaluate a near-critically damped (

√
b2 − 4a ≈ 0)

and an underdamped (oscillatory) system numerically.

D. Numerical Examples for N = 2

Suppose we set

A =

[
0 1
−9/4 −5

]
C =

[
1 0

]

The eigenvalues of A are {−1/2,−9/2} so the transition
matrix, Φ(t), is

Φ(t) =
1

16

[
−2e−9t/2 + 18e−t/2 −4e−9t/2 + 4e−t/2

9(e−9t/2 − e−t/2) 18e−9t/2 − 2e−t/2

]
(35)

Our orthonormal basis is

φ1(t) = e−t/2

and
φ2(t) =

15

4

(
e−9t/2 − 1

5
e−t/2

)
Projecting the transition matrix onto the φi() as in equation
(9) yields

G1 =

[
1.1 0.2
−0.45 0.1

]
G2 =

[
−0.033 −0.066
0.015 0.3

]
and thence through equation (10) we have

Q =

[
1.1 0.2
−0.033 −0.066

]
Notice that in the context of the multiaccess channel, q1

and q2 are highly correlated. In addition, |q1|2 � |q2|2
which bodes ill for the MMSE estimation of ẋ – or were
separate demons seeking to communicate x and ẋ over the
multiaccess channel rather than sharing the sum capacity. Put
another way, Kw̃ = N0Q

−1 (Q−1)> has large diagonal terms
(10 and 272.5) which amplify the effective observation noise,
especially for ẋ.

We can set E = 1 with no loss of generality defining a
signal-to-noise ratio η = E/N0. Numerical evaluation of the
MMSE, colored noise demon and multiaccess demon errors for
η ∈ { 1

10 , 1, 10} are shown for different systems in TABLES I,
II and III below: In all cases, demon-mediated estimation

TABLE I
Estimator Error vs. η: overdamped w/ a = 9

4
, b = 5.

η = 0.1 η = 1 η = 10
MMSE 0.97 0.81 0.56
MAC 0.97 0.73 4.3× 10−2

Color 0.93 0.53 1.9× 10−3

TABLE II
Estimator Error vs. η: near-critically damped w/ a = 0.99, b = 2.

η = 0.1 η = 1 η = 10
MMSE 0.96 0.78 0.47
MAC 0.96 0.69 2.3× 10−2

Color 0.93 0.48 6.4× 10−4

results in lower error variance than MMSE estimation. These
differences are particularly telling at larger signal to noise
ratios, η.

V. DISCUSSION & CONCLUSION

Two communication theory tropes emerged unbidden from
the application of state space projection methods to physical
systems: colored noise channels and multiaccess channels.



TABLE III
Estimator Error vs. η: under-damped w/ a = 4, b = 2.

η = 0.1 η = 1 η = 10
MMSE 0.98 0.89 0.57
MAC 0.98 0.87 0.24
Color 0.96 0.77 6.9× 10−2

Taking these tropes at face value and imagining an ob-
served system that seeks to communicate rather than passively
evolves, we formulated a method by which classical MMSE
estimation could be compared to “demon”-mediated commu-
nication of state information.

A. Are Demons Fair?

We have shown that demon-mediated communication of
information is (potentially much) more efficient than simply
observing system state over a noisy channel. A simplistic
(but essentially correct) explanation for this advantage is that
classical estimation gets to use the channel only once whereas
the demon uses the channel many times in a structured way.
This is the essence of the channel coding theorem [9].

Of course, we must ask: do our demons have an unfair
advantage? Demon-directed state conveyance certainly pro-
vided much better estimates of x(0). However, perhaps the
comparison is unfair since in the classical case, the actual
system state, x(0), is relevant to the observer – as in system
control where the observed system must be nudged along
some desired trajectory. The demon, in contrast, need only
convey x(0) to the observer and leave the system at rest after
communication is done. Of course, the demon could then set
the state to x(0), but at an additional energy cost of |x(0)|2
above and beyond that used for communication. So perhaps
a more fair question is to ask how much additional energy
above |x(0)|2 (to set the state) does the demon require to drive
the observer estimation error well below the standard MMSE.
The machinery developed in this paper allows such marginal
improvement questions to be answered directly although these
were not pursued here.

B. An Uncertainty Principle

Our analysis also touches on the relative uncertainty of
state variables. We have shown that a system under an energy
constraint that deliberately signals an observer through state
variation can convey some fixed number of nats, and when
those nats are used to code the state vector, that finite number
of nats implies some minimum distortion via rate distortion
theory. However, perhaps equally interesting is the notion
that there is a tradeoff in the precision of different state
vector elements reminiscent of the Uncertainty Principle from
quantum mechanics [13].

Consider that in our canonical formulation of equation (1)
we have explicitly made state variables of the position and
velocity of the mass (and that any system with masses and
springs can be so cast). Thus,

Bx +Bẋ ≤ Bmax (36)

where Bx and Bẋ are the number of nats devoted to specifying
x and ẋ in the communication and Bmax is the maximum

number of nats carried. The Uncertainty Principle in quantum
mechanics [13] is usually stated as

σxσp =
h̄

2
(37)

where σ2
x and σ2

p are the variances of the position observation
and momentum, respectively, and h̄ is Planck’s constant.

If we then examine equation (23) we see that D, which is
exactly σ2

x or σ2
ẋ, can be rewritten as

− 1
2 logD + log σ = B ⇒

√
D = σe−B

where σ2 is the variance of the unknown quantity to be
specified, x or ẋ. Since M2σ2

ẋ = σ2
p where M is the mass

in FIGURE 1, we can then write

σxσp =
σ2

M
e−(Bx+Bẋ) (38)

Thus, equation (37) from quantum mechanics is exactly equiv-
alent in form to equation (38) with σ2

M e−(Bx+Bẋ) replacing
h̄/2. Again, it must be emphasized that we do not claim
equivalence with Planck’s constant. However, since σ2, Bx,
M and Bẋ derive from the physical system, the potential for
some relationship or analogy does exist.

C. All Physical Interaction Is Communication
This work was initially prompted by what seemed a simple

question – what does one body “say” to another as they
interact? At a semi-classical level, Newtonian mechanics,
Maxwell’s equations and special relativity would seem to
provide an answer. But at a fundamental level, such con-
tinuous partial differential equations are unsatisfying because
to a communication/information theorist, the conversations
they imply would require infinite signaling energy. Perhaps
carefully understanding the limits of the conversations leads
to physics of a more discrete nature [13]–[15]
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