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Abstract—We derive the maximum mutual information for
an additive exponential noise (AEN) channel with a peak
input constraint. We find that the optimizing input density
is mixed (with singularities) similar to previous results for
AEN channels with a mean input constraint. Likewise, the
maximum mutual information takes a similar form, though
obviously the maximum for the peak constraint is smaller
than for the corresponding mean-constrained channel. This
model is inspired by multiple biological phenomena and
processes which can be abstracted as follows: inscribed matter
is sent by an emitter, moves through a medium, and arrives
eventually at its destination receptor. The inscribed matter
can convey information in a variety of ways such as the
number of signaling quanta – molecules, macromolecular
complexes, organelles, cells and tissues – that are emitted
as well as the detailed pattern of their release. However,
rather than focus on a general class of emitter-receptor
systems or a particular exemplar of biomedical importance,
our ultimate goal is to provide bounds on the potential efficacy
of timed-release signaling for any system which emits identical
signaling quanta. That is, we seek to apply one of the most
potent aspects of information theory to biological signaling
– mechanism blindness – in the hopes of gaining insights
applicable to diverse systems that span a wide range of
spatiotemporal scales.

Index Terms—Exponential channel, bits through queues,
diffusion channel capacity, molecular signaling

I. INTRODUCTION

B IOLOGICAL systems are networks of intercommuni-
cating elements at whatever level one cares to consider

– (macro)molecules, cells, tissues, organisms, populations,
microbiomes, ecosystems, and so on. It is no wonder there-
fore that communication theorists have plied their trade
heavily in this scientific domain (for a recent review, see
[1]). Biological systems offer a dizzying array of processes
and phenomena through which the same and different
tasks, communication or otherwise, might be accomplished
(see, for example, [2]–[7]). Identifying the underlying
mechanisms (signaling modality, signaling agent, signal
transport, and so on) as well as the molecules and structures
implementing the mechanisms is no small undertaking.
Consequently, experimental biologists use a combination
of prior knowledge and what can only be called instinct to
choose those systems on which to expend effort. Guidance
may be sought from evolutionary developmental biology
– a field that compares the developmental processes of
different organisms to determine their ancestral relationship

and to discover how developmental processes evolved.
Insights may be gained by using statistical machine learn-
ing techniques to analyze heterogeneous data such as the
biomedical literature and the output of so-called “omics”
technologies – genomics (genes, regulatory, and non-coding
sequences), transcriptomics (RNA and gene expression),
proteomics (protein expression), metabolomics (metabolites
and metabolic networks), pharmacogenomics (how genetics
affects hosts’ responses to drugs), and physiomics (physi-
ological dynamics and functions of whole organisms).

Typically, the application of communication theory to
biology starts by selecting a candidate system whose
components and operations have been already elucidated
to varying degrees using methods in the experimental
and/or computational biology toolbox [8], [9] and then
applying communication theoretic methods [1], [7], [10]–
[12]. However, we believe that communication theory in
general and information theory in particular is not merely
a system analysis tool for biology. That is, given energy
constraints and some general physics of the problem, an
information-theoretic treatment can be used to provide
outer bounds on information transfer in a mechanism-
blind manner. Thus, rather than simply elucidating and
quantifying known biology, communication theory can
winnow the plethora of possibilies (or even suggest new
ones) amenable to experimental and computational pursuit.
Likewise, general application of communication-theoretic
principles to biology affords a new set of application areas
for communication theorists. Some aspects of the potential
for communication theory as a new lens on biological
systems is explored in [13].

In this light, here we devise an abstraction that en-
compasses a myriad of biological processes and phenom-
ena, utilize it to devise a simpler model suitable for
communication-theoretic investigations, and analyze the
resultant model using ideas discussed in unrelated work,
namely the capacity of timing channels [14]. Numerous
scenarios in biology that involve the transmission of in-
formation can be synthesized and summarized as inscribed
matter is sent by an emitter, moves through a medium,
and arrives eventually at its destination receptor where it
is interpreted. Scenarios illustrating the complexity and
diversity that our abstraction attempts to capture include
the following: messenger RNA molecules (mRNAs) that
are transcribed from the genome migrate from the nu-
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cleus to the cytoplasm where they are translated by the
ribosome into proteins. Molecules of the neurotransmitter
acetylcholine (Ach) that are released by the presynaptic
neuron terminal diffuse through the synaptic cleft and bind
to nicotinic Ach receptors on the motor end plate. Ions,
molecules, organelles, bacteria and viruses that are present
in one cell are shipped through a thin membrane channel
(tunneling nanotube) to the connected cell where they elicit
a physiological response. Membrane-bound vesicles that
contain a variety of materials and substances translocate
through the cytoplasm to the cell membrane where release
their contents into the extracellular environment. Malignant
cells that have escaped the confines of a tissue circulate
through the bloodstream to other sites where they re-
penetrate the vessel walls and can seed a new tumor.
Chemicals factors that are secreted or excreted by an
individual travel outside the body where they are sensed
by a member of the same species triggering a social or
behavioral response.

Although the abstraction accommodates a wide range
of spatiotemporal scale and types of emitters, inscribed
matter, and receptors, it neglects many biologically impor-
tant features. For example, the suite of signaling quanta
– molecules, macromolecular complexes, organelles, cells,
and so on – that are released is not necessarily the same as
that which reaches the target because some may be changed
(eukaryotic mRNAs are modified post-transcriptionally),
some may be removed (Ach can be degraded by the
enzyme Ach-esterase), some never arrives (the random
path produced by diffusion may result in a trajectory that
leads away from the target), and so on. The movement of
inscribed matter may be passive or active, may or may not
require energy and so on.

Despite its limitations, the abstraction does embody a
number of salient features. Typically, information is thought
to be conveyed via numbers of signaling quanta (concen-
tration). Thus, what amount to dose-response curves are
the norm for a variety of experimental biology studies [7].
However, as was shown in an entirely different domain and
unrelated work [14], timing of emissions could in principle
also convey information. Clearly, this possibility cannot
be ignored if our aim is to attempt to provide bounds on
what “a cell can tell the world.” Under certain conditions,
perhaps timing is a useful complement to concentration.
Alternatively, timing might sometimes be energetically un-
favorable and its use unlikely. In either case, information-
theoretic bounds would help guide biological inquiry.

Our emitter-receptor system is motivated also by fun-
damental “systems” problems in biology such as devel-
opment, wherein undifferentiated cells are “told” what to
become by a combination of internal programming and
extracellular milieu signals – and in turn tell other cells
what to become [15]. Thus, communication within and
between cells plays a vital role in the development (em-
bryogenesis), maintenance (tissue homeostasis), subversion

(disorders such as cancer, inflammation, infections) and
decline (aging) of multicellular forms and systems.

Unfortunately, the detailed physics of even this seem-
ingly simple abstraction are fraught with a variety of
complications. As indicated above, free-space diffusive first
passage times are generally not at all well-behaved, often
being heavy-tailed to the point that sometimes some of the
inscribed matter may never arrive at the receptor site. If
we neglect this aspect, then for cells emitting signaling
quanta into constrained media, arrival with finite mean first
passage time is a reasonable approximation. So, similar to
[14], we take exponential first passage with mean passage
time 1/λ and use the results of [14] to provide bounds
on any finite-mean first passage time density. Simplifying
the emitter-receptor system even further, we arrive finally
at a communication theoretic-problem involving an Addi-
tive Exponential Noise (AEN) channel with a peak input
constraint.

In scenarios where the emitter and receptor are in close
proximity, the emitted signaling quanta may impinge on a
specific unique receptor. However, this is not necessarily
always the case. Thus, since signaling quanta of the same
type are indistinguishable, which emission corresponds to
which arrival is unknown in general. Therefore, if emissions
occur at times {Xi} and the corresponding arrivals occur at
{Yi}, then all the receiver has available is {~Yi}, the time-
ordered version of the arrivals.

This problem, the main subject of ongoing work, is one
we completely ignore here. However, since X→ Y → ~Y
forms a Markov chain (with the last step being a determin-
istic ordering map), we know that I(X; Y) ≥ I(X; ~Y) by
the data processing theorem [16]. Thus, by calculating the
timing information that a single signaling agent can convey
on average we can provide an upper bound for the ensemble
indistinguishable signaling quanta problem.

Our main results: for an emission interval constrained
to [0, T ], the emission time density that maximizes I(X;Y )
is mixed – uniform on [0, T ] with singularities at t = 0
and t = T . For an average transit time of 1

λ , the maximum
mutual information between X and Y is log

(
1 + λT

e

)
.

In section II, we review the relevant model and main
results from previous work [14]. In section III, we present
our model for which we find the optimizing emission time
density in section IV. We discuss our results in section V
with an eye toward making predictions about emitter-
receptor systems in special cases.

II. AEN WITH A MEAN CONSTRAINT

For an AEN channel with mean constraint we have,

Y = X + Z

when X ≥ 0 with a mean constraint E[X] = α and Z is
exponential with mean 1/λ. The optimal input distribution
is

fX(x) =
1

1 + λτ
δ(x) +

λ2τ

(1 + λτ)2
e
−λx
1+λτ .
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and the capacity per channel use is

C = log(1 + τλ).

The capacity of this channel was found by [14] utilizing
the fact that exponential densities maximize the differential
entropy over all non-negative random variable distributions
[16]. Recently, [17] derived the same result by finding the
mutual information saddle points.

For exponential Z we have h(Z) ≥ h(W ) for all non-
negative random variables W with E(W ) ≤ E(Z) = τ .
Thus, the maximum mutual information over the AEN
channel, Ie(X;Y ), is the smallest maximum mutual infor-
mation for any such channel. The AEN therefore provides a
minmax bound on capacity over mean-constrained channels
with non-negative inputs as proven in [14].

III. AEN WITH A DEADLINE

For the AEN channel with a deadline we have

Y = X + Z

where again Z is an independent exponential random
variable with mean 1/λ. X is again non-negative but is now
constrained to lie in [0, T ] with no explicit mean constraint.
We seek to maximize I(X;Y ). Since

I(X;Y ) = h(Y )− h(Y |X) = h(Y )− (1− log λ)

we seek to maximize h(Y ) with respect to the input density
fX().

However, unlike the mean-constrained case considered
in [14], it is impossible to produce an exponential Y
with mean 1

λ + E[X] from X constrained to the finite
interval [0, T ] as will become apparent in the following
development.

Since X is independent of Z we have

fY (y) =
∫ y

0

fX(x)fZ(y − x)dx 0 ≤ y

and because X is constrained to [0, T ], we can divide fY (y)
into two regions: region I where y ∈ [0, T ] and region II
where y ∈ (T,∞). We then have

fY (y) =
{
σfY |I(y) 0 ≤ y ≤ T
(1− σ)fY |II(y) y ≥ T (1)

where

σ =
∫ T

0

fY (y)dy

with
σfY |I(y) =

∫ y

0

fX(x)fZ(y − x)dx (2)

and

(1− σ)fY |II(y) =
∫ T

0

fX(x)fZ(y − x)dx (3)

For Z exponential with parameter λ we have

fY (y) =
∫ y

0

fX(x)λe−λ(y−x)dx 0 ≤ y (4)

and
σfY |I(y) =

∫ y

0

fX(x)λe−λ(y−x)dx (5)

and

(1− σ)fY |II(y) = e−λy
∫ T

0

fX(x)λeλxdx (6)

The entropy of Y is then

h(Y ) = −
∫ ∞

0

fY (y) log fY (y)dy

= −
∫ T

0

σfY |I(y) log
(
σfY |I(y)

)
dy

−
∫ ∞
T

(1− σ)fY |II(y) log
(
(1− σ)fY |II(y)

)
dy

= σh(Y |I) + (1− σ)h(Y |II) +HB(σ)
(7)

where HB() is the binary entropy function. Notice that no
particular care has to be taken with the integrals at y = T
because fY (y) cannot contain singularities – it is obtained
by the convolution of two densities, one of which, fZ(),
contains no singularities.

IV. MAXIMIZATION OF h(Y )

The most interesting aspect of equation (6) is that the
shape of the conditional density for y > T is completely
determined – an exponential with parameter λ as depicted
in Fig 1. Thus, selection of fX() does not affect fY |II()

Fig. 1: The shapes associated with fY (y): We assume
arbitrary shape in region I and the requisite exponential
shape in region II.

and we must have h(Y |II) = 1− log λ.
This observation suggests a three-step approach to max-

imizing h(Y ). In the first two steps, we completely ignore
fX() and find the shape fY |I() and value of σ which
maximize equation (7). In step three, we determine that
there indeed exists a density fX() which produces the
optimizing fY ().

Step 1: For fixed σ we see from equation (7) that h(Y )
is maximized solely by our choice of fY |I(). The uniform
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Fig. 2: The updated shape of fY (y) after step 1: fY |I(y)
is chosen as 1

T .

density maximizes entropy on a finite interval [16]. Thus,
fY |I(y) = 1

T and h(Y |I) = log T as depicted in Fig 2.
Step 2: Since for any σ, h(Y |I) = log T , we have

h(Y ) = σ log T + (1− σ)(1− log λ) +HB(σ) (8)

Taking derivatives with respect to σ yields

d

dσ
h(Y ) = log T−(1−log λ)−(1+log σ)+(1+log(1−σ))

which we set to zero to obtain

log λT − log
σ

1− σ
− 1 = 0

We rearrange to obtain

λT =
eσ

1− σ
from which we deduce that the optimal σ is

σ∗ =
λT

e+ λT
(9)

Returning to the optimization we have

max
fX

h(Y ) ≤ σ∗ log T + (1− σ∗)(1− log λ) +HB(σ∗)

which through substitution of σ∗ according to equation (9)
yields

max
fX

h(Y ) ≤ log
(
e+ λT

λ

)
(10)

with equality when

fY (y) =


λ

e+ λT
y ∈ [0, T ]

e

e+ λT
λe−λ(y−T ) y > T

(11)

as depicted in Fig 3.
Step 3: All that remains is to ascertain whether ∃fX()

which can generate the optimizing fY (y). Since fY () is
the convolution of fZ() and fX() we can use Fourier
transforms to obtain a candidate solution for fX(). That

Fig. 3: The optimizing fY (y).

is, the Fourier transform of fZ() is λ
λ+j2πf so the Fourier

transform of fX() is

F {fX()} = F {fY ()}
(
j2πf
λ

+ 1
)

Multiplication by j2πf implies differentiation so we must
have

fX(x) =
1
λ

d

dx
fY (x) + fY (x)

which using equation (11) yields

fX(x) =


λ

e+ λT
0 < x < T

δ(x)
1

e+ λT
+ δ(x− T )

e− 1
e+ λT

o.w.
(12)

– a valid probability density function.
We can now state the maximum mutual information as

max
fX

I(X;Y ) = log
(

1 +
λT

e

)
(13)

which is achieved using the emission time density of
equation (12).

The only remaining question is whether for interval-
limited inputs, the exponential first passage time density,
to quote [14] “plays the same role ... that Gaussian noise
plays in additive noise channels.” The answer is yes.

Theorem 1: If X∗ ∈ [0, T ] has the density of equation
(12), Z∗ is exponential with mean 1

λ and Z is any other
non-negative random variable with E[Z] = 1

λ , then

log
(

1 +
λT

e

)
≤ max

fX
I(X;X + Z) (14)

Proof: Theorem 1 We adapt part (c) of Theorem 3 in [14]
and note that

I(X∗;X∗+Z) ≥
∫ ∞

0

fY |X(y|x)f∗X(x) log
f∗Y |X(y|x)

f∗Y (y)
dxdy

(15)
where the starred density functions are the optimizing
functions found previously.
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We simplify the right hand side of equation (15):∫∞
0
fY |X(y|x)f∗X(x) log

f∗Y |X(y|x)
f∗Y (y) dxdy

=
∫∞
0
fY |X(y|x)f∗X(x)

[
log λe−λ(y−x)

f∗Y (y)

]
dydx

= log λ− λ(E[Y ]− E[X])−
∫∞
0
fY (y) log f∗Y (y)dy

= log λ
e −

∫ T
0
fY (y) log λ

λT+edy

−
∫∞
T
fY (y)

(
log
(

eλ
λT+e

)
− λ(y − T )

)
dy

= log
(
1 + λT

e

)
−
∫∞
T
fY (y)(1− λ(y − T ))dy

= log
(
1 + λT

e

)
− λF̄Y (T )

(
1
λ + T − E[Y |II]

)
= log

(
1 + λT

e

)
+ λF̄Y (T ) (E[Y |II]− E[Y ])

where F̄Y (T )(y) is the complementary cumulative distri-
bution function (CCDF) of the density for Y = Z +X∗.

Then, since E[Y |II] ≥ E[Y ] we must have via equation
(15)

I(X∗;X∗ + Z) ≥ log
(

1 +
λT

e

)
and thence

max
fX

I(X;X + Z) ≥ log
(

1 +
λT

e

)
•
Thus, equation (13) constitutes a min-max bound on the
mutual information between an input constrained to [0, T ]
and non-negative additive noise with mean 1

λ .

V. DISCUSSION AND CONCLUSION

For large λT � e, the uniform portion of fX() domi-
nates the emission time distribution since deviation of the
arrival time around X+1/λ is small. Thus, the receiver can
distinguish between relatively fine gradations of emission
times within the interval [0, T ]. The endpoint emission
times essentially become special instances of emission
times within the interval, and a cardinality of only 2 can
be increasingly neglected as λT becomes large. Thus, as a
limit we have,

fX|λT�e(x) =

{ 1
T

0 < x < T

0 o.w.
(16)

Conversely, when λT is small, emissions must be
“rushed” relative the mean first passage time 1/λ. Thus,
emissions within [0, T ] become increasingly indistinguish-
able. Since increased distance between emission times
increases distinguishability, the dominant emission prob-
ability mass is placed at the endpoints. Thus, as a limit we
have,

fX|λT�e(x) =

{
0 0 < x < T

δ(x)
1
e

+ δ(x− T )
e− 1
e

o.w.
(17)

The results suggest that when first passage times are
highly variable as might be the case for larger emitter-
receptor pair distances, burst-release of signaling agents at
interval boundaries most effectively conveys information.

Likewise, if the variability of first passage time is low, as
might be the case where emitter-receptor pairs are close to
one another and/or some active and predictable transport
method is used, then more information can be conveyed
by spreading emission times over the interval. In the latter
case, under an assumption of infrequent emission of indi-
vidual sites but tightly coupled emitter-receptor pairings,
the results presented here may approximate the maximum
mutual information since the tight coupling implicitly iden-
tifies molecules, and since infrequent emissions leads to
approximately independent channel use of each emitter-
receptor pair.
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