Christopher Rose Rutgers University, WINLAB

Cal Tech Lunch Bunch October 25, 2011 1 Accelerator Envy

PHYSICIST

PHYSICIST

$$E = h\nu$$

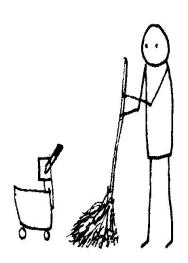
$$E = mc^2$$

Accelerator Envy

PHYSICIST

$$E = h\nu$$

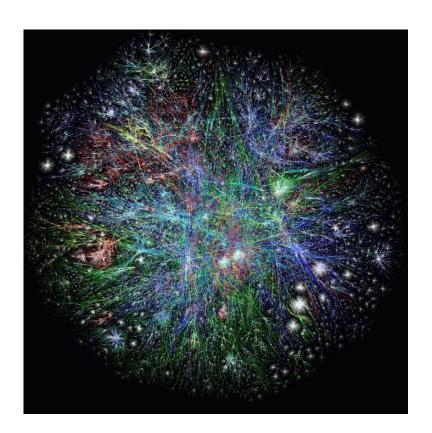
$$E = mc^2$$


2 Accelerator Envy

communication theorist

communication theorist

$$W\log\left(1 + \frac{P}{N_0W}\right) \qquad L = \lambda \tau$$


2 Accelerator Envy

communication theorist

$$W\log\left(1 + \frac{P}{N_0 W}\right) \qquad L = \lambda \tau$$

3 Insult to injury

The Usual Cocktail Party Response

Mobility is good

- Can often tolerate delay
- Channel *especially* good when nearby

- Mobility is good
 - Can often tolerate delay
 - Channel especially good when nearby
- Storage density is increasing

- Mobility is good
 - Can often tolerate delay
 - Channel especially good when nearby
- Storage density is increasing

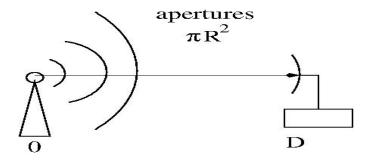
GO POSTAL!

Forget Radio! Write message down! Toss it to recipient!

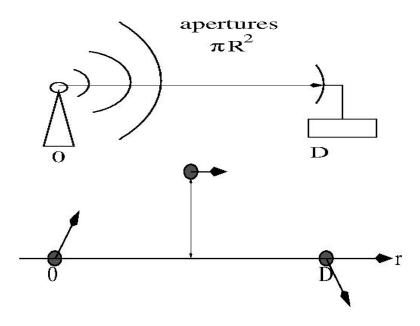
- Mobility is good
 - Can often tolerate delay
 - Channel especially good when nearby
- Storage density is increasing

GO POSTAL!

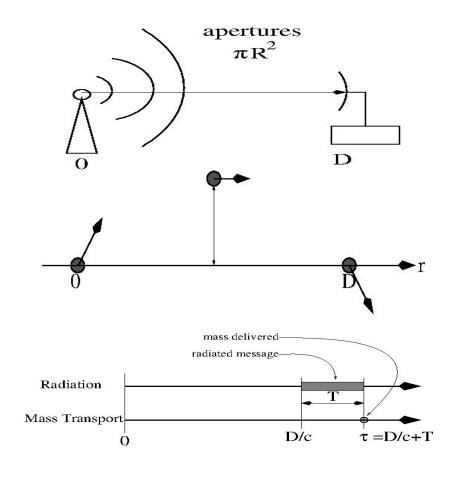
Forget Radio! Write message down! Toss it to recipient!


COMPLETELY RIDICULOUS, RIGHT??!!

Look More Closely At What We Think We Know


A truck filled with storage media, driven across town, is a very reliable high bit rate channel.

-Comm. Theory Collective Subconscious


A Little Analytic Rigor

A Little Analytic Rigor

A Little Analytic Rigor

Radiation Energy Requirements

• Shannon Capacity: $C = B/T = W \log_2 \left(\frac{P}{N_0 W} + 1\right)$

Radiation Energy Requirements

- Shannon Capacity: $C = B/T = W \log_2 \left(\frac{P}{N_0 W} + 1 \right)$
- Power capture fraction: $\nu(D) = \frac{AG}{4\pi D^2}$

Radiation Energy Requirements

- Shannon Capacity: $C = B/T = W \log_2 \left(\frac{P}{N_0 W} + 1\right)$
- Power capture fraction: $\nu(D) = \frac{AG}{4\pi D^2}$
- $\mathcal{E}_r = PT = BN_0 \frac{4\pi D^2}{AG} \frac{TW}{B} \left[2\frac{B}{TW} 1 \right]$

Radiation Energy Requirements

- Shannon Capacity: $C = B/T = W \log_2 \left(\frac{P}{N_0 W} + 1\right)$
- Power capture fraction: $\nu(D) = \frac{AG}{4\pi D^2}$
- $\mathcal{E}_r = PT = BN_0 \frac{4\pi D^2}{AG} \frac{TW}{B} \left[2\frac{B}{TW} 1 \right]$
- Large TW:

$$\mathcal{E}_r \ge BN_0\left(\frac{4\pi D^2}{AG}\right)\ln 2$$

Writing Energy Requirements (ROCKET SCIENCE!)

$$\mathcal{E}^* = \min_{x(t)} \max_{t} \mathcal{E}(t)$$

Writing Energy Requirements (ROCKET SCIENCE!)

$$\mathcal{E}^* = \min_{x(t)} \max_{t} \mathcal{E}(t)$$

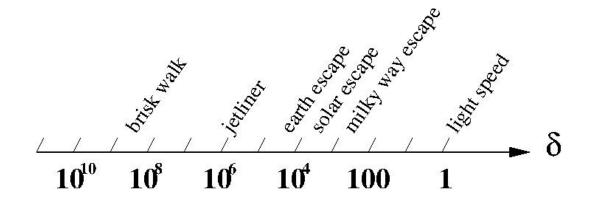
Jensen's Inequality Leads To

Writing Energy Requirements (ROCKET SCIENCE!)

$$\mathcal{E}^* = \min_{x(t)} \max_{t} \mathcal{E}(t)$$

Jensen's Inequality Leads To

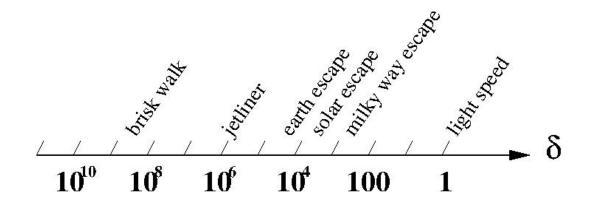
Inscribed Matter Energy Requirements


Message size B bits, mass information density $\tilde{\rho}$ bits/kg

$$\mathcal{E}_w = \frac{1}{2} \frac{B}{\tilde{\rho}} \bar{v}^2 = \frac{1}{2} \frac{B}{\tilde{\rho}} \left(\frac{c}{\delta} \right)^2$$

Inscribed Matter Energy Requirements

Message size B bits, mass information density $\tilde{\rho}$ bits/kg


$$\mathcal{E}_w = \frac{1}{2} \frac{B}{\tilde{\rho}} \bar{v}^2 = \frac{1}{2} \frac{B}{\tilde{\rho}} \left(\frac{c}{\delta} \right)^2$$

Inscribed Matter Energy Requirements

Message size B bits, mass information density $\tilde{\rho}$ bits/kg

$$\mathcal{E}_w = \frac{1}{2} \frac{B}{\tilde{\rho}} \bar{v}^2 = \frac{1}{2} \frac{B}{\tilde{\rho}} \left(\frac{c}{\delta} \right)^2$$

Artillery: adds a factor of 2 to energy

Escape: small penalty if $\bar{v} > 2 \times$ escape velocity

Radiation to Transport Energy Ratio

$$\Omega \equiv \frac{E_r}{E_w}$$

Radiation to Transport Energy Ratio

$$\Omega \equiv \frac{E_r}{E_w}$$

Receiver Noise $\equiv N_0$ Joules/Hz

Radiation to Transport Energy Ratio

$$\Omega \equiv \frac{E_r}{E_w}$$

Receiver Noise $\equiv N_0$ Joules/Hz Mass Information Density $\equiv \tilde{\rho}$ bits/kg

Radiation to Transport Energy Ratio

$$\Omega \equiv \frac{E_r}{E_w}$$

Receiver Noise $\equiv N_0$ Joules/Hz Mass Information Density $\equiv \tilde{\rho}$ bits/kg Velocity Ratio $\equiv \delta = \frac{c}{v}$

Radiation to Transport Energy Ratio

$$\Omega \equiv \frac{E_r}{E_w}$$

Receiver Noise $\equiv N_0$ Joules/Hz Mass Information Density $\equiv \tilde{\rho}$ bits/kg Velocity Ratio $\equiv \delta = \frac{c}{v}$ Normalized Aperture $\equiv \mathcal{A} = \frac{2R}{\lambda}$

Radiation to Transport Energy Ratio

$$\Omega \equiv \frac{E_r}{E_w}$$

Receiver Noise $\equiv N_0$ Joules/Hz Mass Information Density $\equiv \tilde{\rho}$ bits/kg Velocity Ratio $\equiv \delta = \frac{c}{v}$ Normalized Aperture $\equiv \mathcal{A} = \frac{2R}{\lambda}$ Normalized Distance $\equiv \mathcal{D} = \frac{D}{2R}$

Radiation to Transport Energy Ratio

$$\Omega \equiv \frac{E_r}{E_w}$$

Receiver Noise $\equiv N_0$ Joules/Hz Mass Information Density $\equiv \tilde{\rho}$ bits/kg Velocity Ratio $\equiv \delta = \frac{c}{v}$ Normalized Aperture $\equiv \mathcal{A} = \frac{2R}{\lambda}$ Normalized Distance $\equiv \mathcal{D} = \frac{D}{2R}$

$$\Rightarrow \Omega \ge \left[\frac{\tilde{\rho}N_0}{c^2}\right] \left[\frac{8}{\pi^2} \left(\frac{\mathcal{D}}{\mathcal{A}}\right)^2\right] (2\ln 2)\delta^2 \quad \Leftarrow$$

Equal Receiver/Transmitter Apertures

Mass Information Density, $\tilde{ ho}$

Mass Information Density, $\tilde{ ho}$

How About Black Holes?

Mass Information Density, $\tilde{\rho}$

How About Black Holes?

- \bullet Schwarzschild Radius: $r=2GM/c^2=1.5X10^{-27}M$
- Info content goes as event horizon *surface area*: $10^{72}r^2$ bits

$$ilde{
ho} = 1.5 imes 10^{45} r$$
 bits/kg

Mass Information Density, $\tilde{\rho}$

How About Black Holes?

- Schwarzschild Radius: $r = 2GM/c^2 = 1.5X10^{-27}M$
- Info content goes as event horizon *surface area*: $10^{72}r^2$ bits

$$ilde{
ho} = 1.5 imes 10^{45} r$$
 bits/kg

• Microhole (1 μ m radius): 1.5×10^{39} bits/kg

Mass Information Density, $\tilde{\rho}$

How About Black Holes?

- Schwarzschild Radius: $r = 2GM/c^2 = 1.5X10^{-27}M$
- Info content goes as event horizon *surface area*: $10^{72}r^2$ bits

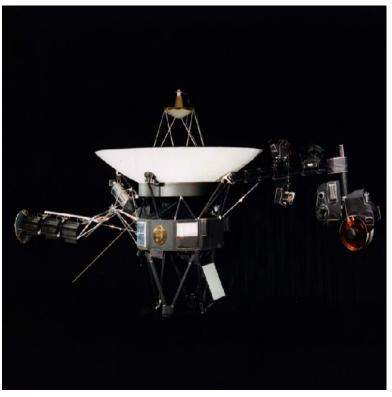
$$ilde{
ho} = 1.5 imes 10^{45} r$$
 bits/kg

- Microhole (1 μ m radius): 1.5×10^{39} bits/kg
- Donut-hole sized hole (1cm radius): 1.5×10^{43} bits/kg

Mass Information Density, $\tilde{\rho}$

How About Black Holes?

- Schwarzschild Radius: $r = 2GM/c^2 = 1.5X10^{-27}M$
- Info content goes as event horizon *surface area*: $10^{72}r^2$ bits


$$ilde{
ho}=1.5 imes10^{45}r$$
 bits/kg

- Microhole (1 μ m radius): 1.5×10^{39} bits/kg
- Donut-hole sized hole (1cm radius): 1.5×10^{43} bits/kg

VERY antisocial!

Empirical Mass Information Densities I

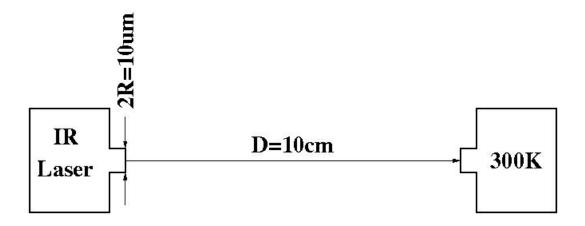
Voyager Spacecraft: 10⁶ bits/kg

Empirical Mass Information Densities II

- **20 lb paper** @ 1000dpi: 2×10^{10} bits/kg
- **DVD**: 3×10^{12} bits/kg
- Magnetic Storage with FeO₂: 2×10^{17} bits/kg
- Optical Lithography with SiO₂: 3.85×10^{18} bits/kg
- E-beam Lithography with SiO_2 : 1.54×10^{21} bits/kg
- STM with Xe on Ni: 1.74×10^{22} bits/kg
- RNA: 3.6×10^{24} bits/kg
- **Li + Be**: 7.5×10^{25} bits/kg

Radiation vs. Inscribed Matter

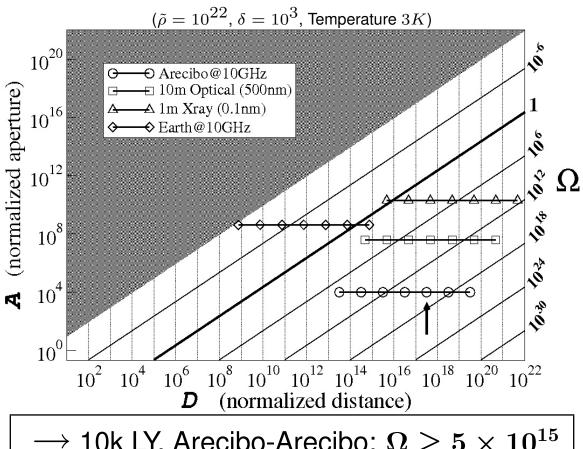
Terrestrial Artillery vs. Radiation


$$\begin{split} \tilde{\rho} &= 3 \times 10^{24} \\ 1 \text{ GHz Carrier} \\ R &= 5 \text{cm (handheld receiver)} \\ \text{Temperature } 300 K \end{split}$$

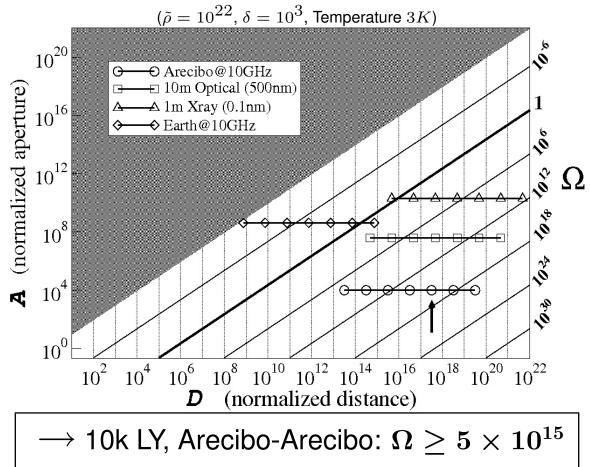
Range (meters)	Transit Time	Ω
10	$1.43~\mathrm{sec}$	1.3×10^7
100	$4.5~\mathrm{sec}$	1.3×10^{8}
10^{3}	14.3 sec	1.3×10^{9}
10^{4}	45 sec	1.3×10^{10}

Aside: ≈ 4 minutes between NYC and Boston ballistically (320km).

Wafer to Wafer Laser Links


$$\delta = 10^9$$
, $\lambda = 1 \mu \text{m}$

Magnetic chits: $\Omega \geq 10^4$


STM-inscribed chits: $\Omega \ge 5 \times 10^8$

Interstellar

ightarrow 10k LY, Arecibo-Arecibo: $\Omega \geq 5 imes 10^{15}$

Interstellar

Radiation/Matter: (24 megaton blast) / (Shelve 5 lb sugar bag)

Voyager Existence Proof

- 10^9 bit payload
- 900 kg mass
- Catapult launch: about 800 joules/bit

Voyager Existence Proof

- 10⁹ bit payload
- 900 kg mass
- Catapult launch: about 800 joules/bit

Breakeven Distance: ≈ 2000 light years

Voyager Existence Proof

- 10⁹ bit payload
- 900 kg mass
- Catapult launch: about 800 joules/bit

Breakeven Distance: ≈ 2000 light years

- Asides:
 - ETA nearest star: ≈ 100 kilo-years
 - Rocket Launch: distance up $\times 9$.
 - Use 3 DVDs (instead of gold disc): distance down $\times 10$
 - Use 1 gram of "RNA": distance down $\times 10^6$ ($\approx 1/4000$ distance to nearest star)

Communications Theory Has Spoken

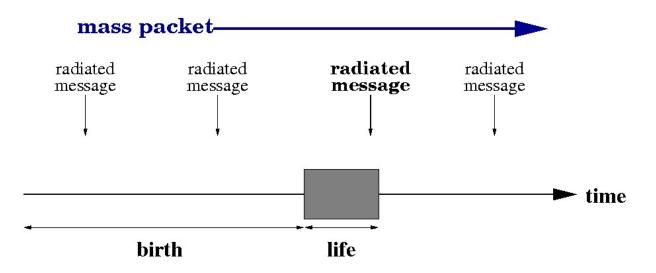
If delay can be tolerated, inscribed matter is *stunningly* more energy-efficient than radiation

Sluggish Data vs. ADSL

Annals of Improbable Research 11(4), 2005

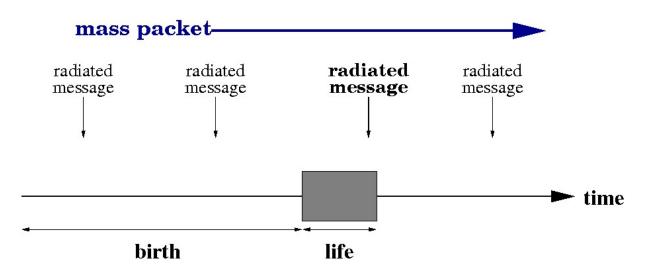
hey, Hey HEY!!!!! What About ... ?

hey, Hey HEY!!!!! What About ... ?


Radiation Penalty

- Impermanence and Repetition
- Localizability

Matter Penalties


- Preservation
- Broadcast
- Inscription Energy
- Deceleration @Target
- Navigation
- Advertisement

Matter Persists – Radiation Vanishes

- Civilization Birth Rate: $\alpha = 1/10^9$ per year
- Civilization Extinction Rate: $\beta = 1/10^6$ per year
- Success criterion $0 \le \Phi \le 1$
- How many radiated repetitions?

Matter Persists – Radiation Vanishes



- Civilization Birth Rate: $\alpha = 1/10^9$ per year
- Civilization Extinction Rate: $\beta = 1/10^6$ per year
- Success criterion $0 \le \Phi \le 1$
- How many radiated repetitions?

$$-\Phi = 0.99 \to 2 \times 10^5$$

$$-\Phi = 0.9999 \rightarrow 2 \times 10^7$$

Come Eat Me!

Cosmic Insults

• Insults:

Cosmic Insults

• Insults:

High energy particle bombardment

Cosmic Insults

• Insults:

- High energy particle bombardment
- Heating (diffusion)

Cosmic Insults

• Insults:

- High energy particle bombardment
- Heating (diffusion)
- Ion tracks, dislocations, subatomic cascades

Cosmic Insults

• Insults:

- High energy particle bombardment
- Heating (diffusion)
- Ion tracks, dislocations, subatomic cascades

• Shielding:

Cosmic Insults

• Insults:

- High energy particle bombardment
- Heating (diffusion)
- Ion tracks, dislocations, subatomic cascades

• Shielding:

- 10 million years at 10% bacteria viability: 3 m radius rock (3g cm⁻³ density)
- **penalty:** 3.4×10^{6}

Cosmic Insults

• Insults:

- High energy particle bombardment
- Heating (diffusion)
- Ion tracks, dislocations, subatomic cascades

• Shielding:

- 10 million years at 10% bacteria viability: 3 m radius rock (3g cm⁻³ density)
- **penalty:** 3.4×10^{6}

Clever Composition, Coding and Correction?

need better channel characterization

- Milky Way stellar density 2.8×10^{-2} stars (LY)⁻³
- Spherical galaxy, Arecibo receiver, $\tilde{\rho}=10^{22}$, $\delta=\frac{c}{v}=10^3$

- Milky Way stellar density 2.8×10^{-2} stars (LY)⁻³
- Spherical galaxy, Arecibo receiver, $\tilde{\rho}=10^{22}$, $\delta=\frac{c}{v}=10^3$
 - $D = 10^4$ LY: 1.17×10^{11} stars (but $\Omega > 10^{25}$)

- Milky Way stellar density 2.8×10^{-2} stars (LY)⁻³
- Spherical galaxy, Arecibo receiver, $\tilde{\rho}=10^{22}$, $\delta=\frac{c}{v}=10^3$
 - $D = 10^4$ LY: 1.17×10^{11} stars (but $\Omega > 10^{25}$)
 - $D = 10^6$ LY: 1.17×10^{17} stars (but $\Omega > 10^{29}$)

- Milky Way stellar density 2.8×10^{-2} stars (LY)⁻³
- Spherical galaxy, Arecibo receiver, $\tilde{\rho}=10^{22}$, $\delta=\frac{c}{v}=10^3$
 - $D = 10^4$ LY: 1.17×10^{11} stars (but $\Omega > 10^{25}$)
 - $D = 10^6$ LY: 1.17×10^{17} stars (but $\Omega > 10^{29}$)
 - $D = 10^{10}$ LY: 1.17×10^{29} stars (but $\Omega > 10^{37}$)

Is Radiation Better for Broadcast?

- Milky Way stellar density 2.8×10^{-2} stars (LY)⁻³
- Spherical galaxy, Arecibo receiver, $\tilde{\rho}=10^{22}$, $\delta=\frac{c}{v}=10^3$
 - $D = 10^4$ LY: 1.17×10^{11} stars (but $\Omega > 10^{25}$)
 - $D = 10^6$ LY: 1.17×10^{17} stars (but $\Omega > 10^{29}$)
 - $D = 10^{10}$ LY: 1.17×10^{29} stars (but $\Omega > 10^{37}$)

Visible Universe: $D = 1.37 \times 10^{10}$ LY

Inscription Energy/Speed

• Matter Inscription/Readout Energy and Time

Inscription Energy/Speed

- Matter Inscription/Readout Energy and Time
 - Can be reversible and arbitrarily fast (R. Landauer)

Inscription Energy/Speed

Matter Inscription/Readout Energy and Time

Can be reversible and arbitrarily fast (R. Landauer)

Empirical energy calc:

- 60000 ATP/second for 20 minutes: 4639 Kbase of E-coli
- -8×10^{-20} J per ATP molecule
- $-6.2 \times 10^{-19} \text{J bit}^{-1} \ (\approx 4 \text{ eV bit}^{-1}).$
- \mathcal{E}_w at earth escape: 1.68×10^{-17} J bit⁻¹.

Inscription Energy/Speed

Matter Inscription/Readout Energy and Time

Can be reversible and arbitrarily fast (R. Landauer)

• Empirical energy calc:

- 60000 ATP/second for 20 minutes: 4639 Kbase of E-coli
- -8×10^{-20} J per ATP molecule
- $-6.2 \times 10^{-19} \text{J bit}^{-1} \ (\approx 4 \text{ eV bit}^{-1}).$
- \mathcal{E}_w at earth escape: 1.68×10^{-17} J bit⁻¹.

Construction energy probably not a problem

Parking the Package (traditional rocketry)

- Exhaust braking
- Energy penalty (excess mass): $e^{\frac{c}{\delta g I_{sp}}}$
- $I_{sp} \equiv \text{Specific Impulse}$
 - Chemical: 10^2
 - Nuclear Electric: 10⁴
 - Fusion: 10^6
- $I_{sp} = 20,000, \, \delta = 1000 \rightarrow \text{penalty } 4.6$
- $\delta = 100$ or $I_{sp} = 2000 \rightarrow$ penalty 4.4×10^6

Gravitational Perturbations

Angular Deflection: $\theta \approx \frac{2MG}{v_0^2 y_0}$ (radians)

- $M = 2 \times 10^{30}$ kg (solar)
- $v_0 = c/1000$
- Stellar Density: 2.8×10^{-2} stars (LY)⁻³
- 10kLY trip mean miss distance: ≈ 0.14 LY

Aim not a big problem

Message Advertisement?

Solar Space is BIG

Big Rock?

Big Rock?

Somewhat antisocial

Odd Rock?

Seeded Comet?

Active Probe?

Micro Ark?

Are we there yet!?!?

CONCLUSION

IF: energy important & delay tolerable THEN: inscribed matter messaging is efficient

CONCLUSION

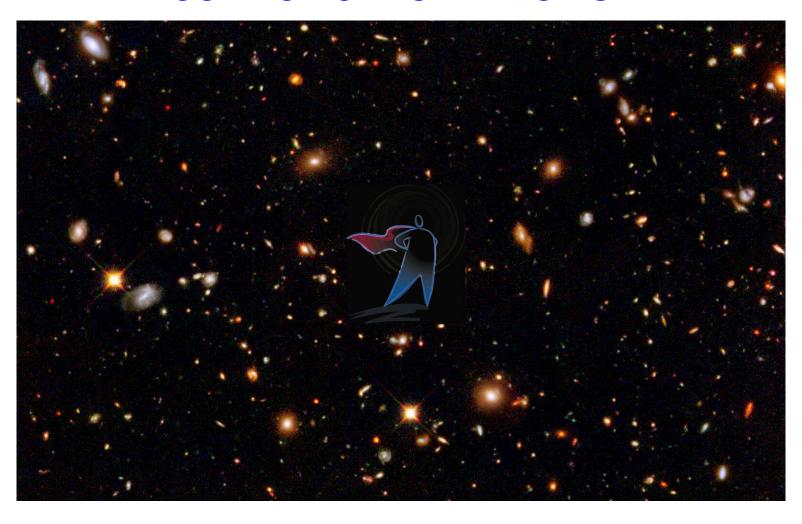
IF: energy important & delay tolerable THEN: inscribed matter messaging is efficient

- Terrestrial
 - FedEx, Netflix, Snail Mail (literally!)
- Chip-to-chip or mote-to-mote
 - smart dust tossing inscribed dust
- Biological systems
 - construction/dispersal cost for messenger molecules

CONCLUSION

IF: energy important & delay tolerable THEN: inscribed matter messaging is efficient

- Terrestrial
 - FedEx, Netflix, Snail Mail (literally!)
- Chip-to-chip or mote-to-mote
 - smart dust tossing inscribed dust
- Biological systems
 - construction/dispersal cost for messenger molecules


But perhaps most important ...

Great Comm. Theory Party Banter

COMMUNICATION THEORIST

Learn More

Nature 431, pp.47–49, September 2, 2004 **Web Site:** http://www.winlab.rutgers.edu/~crose/cgi-bin/cosmicP.html