Fundamental Limits of Molecular Communication

Christopher Rose¹ I. Saira Mian²

¹School of Engineering, Brown University ² University College London

> CTW'16 Nafplio, Greece May18, 2016

1

Wireless With Molecules

Preamble

A Simple Statement of Fact

1

Wireless With Molecules

Preamble

A Simple Statement of Fact

EVERYTHING

1

Wireless With Molecules

Preamble

A Simple Statement of Fact

EVERYTHING

is

School of Engineering@Brown University

Wireless With Molecules

Preamble

A Simple Statement of Fact

EVERYTHING is

Communication Theory

School of Engineering@Brown University

1

Preamble

Followed That Hammer Into Outer Space

"Inscribed Matter" Led To Inner Space

School of Engineering@Brown University

"Inscribed Matter" Led To Inner Space

- 20 lb paper @ 1000dpi: 2×10^{10} bits/kg
- DVD: 3×10^{12} bits/kg
- Magnetic Storage with FeO₂: 2×10^{17} bits/kg
- Optical Lithography with SiO₂: 3.85×10^{18} bits/kg
- E-beam Lithography with SiO₂: 1.54×10^{21} bits/kg
- STM with Xe on Ni: 1.74×10^{22} bits/kg
- RNA: 3.6×10^{24} bits/kg
- Li + Be: 7.5×10^{25} bits/kg

What Is A ...

Preamble

What Is A ...

Signaling Molecule

School of Engineering@Brown University

Preamble

A REALLY Simple Signaling Molecule (Token)

Naked (and clothed) Ca++

A Simple Signaling Molecule (Token)

Quorum sensing signal

Preamble

A More Complex Signaling Molecule (Token)

Nerve Growth Factor (protein)

School of Engineering@Brown University

What Is A ...

Preamble

What Is A ...

Signal Receptor

School of Engineering@Brown University

CTW 2016

C. Rose

Receptor Specificity Cartoon

Ligand (token) docks with receptor (protein)

A More Detailed Receptor Specificity Cartoon

Ligands (tokens) dock with receptor (protein)

School of Engineering@Brown University

What Are Some ...

Preamble

What Are Some ...

Communication Examples

School of Engineering@Brown University

Reception and Transduction Cartoon

$\textbf{Ligand} \rightarrow \textbf{Receptor} \rightarrow \textbf{Gene Tickling}$

Identical Tokens: bacteria

Identical Tokens: neurons

ACh release \rightarrow postsynaptic uptake

Preamble

Tokens with Payloads: transcription

Nuclear DNA \rightarrow mRNA \rightarrow Ribosome \rightarrow Protein

School of Engineering@Brown University

Active Transport

Bacterial Microtubules

School of Engineering@Brown University

TIMING is FUNDAMENTAL

TIMING is FUNDAMENTAL

A game of release (time t) and catch (time s = t + d)

TIMING is FUNDAMENTAL

A game of release (time t) and catch (time s = t + d)

Multiple identical molecules: $\mathbf{t} \to \mathbf{s} \to \vec{\mathbf{s}}$

TIMING is FUNDAMENTAL

A game of release (time t) and catch (time s = t + d)

Multiple identical molecules: $\mathbf{t} \to \mathbf{s} \to \vec{\mathbf{s}}$

Molecules with embedded payloads (similar math)

TIMING is FUNDAMENTAL

A game of release (time t) and catch (time s = t + d)

Multiple identical molecules: $\mathbf{t} \to \mathbf{s} \to \vec{\mathbf{s}}$

Molecules with embedded payloads (similar math)

OUTRAGEOUSLY Low Power

Transport (passive) Receptor Kinetics (ignore)

Transport (passive) Receptor Kinetics (ignore)

$\textbf{Coding} \rightarrow \textbf{Emission} \rightarrow \textbf{Transport} \rightarrow \textbf{Capture} \rightarrow \textbf{Decoding}$

School of Engineering@Brown University

Could Even Add Some Drift

$\textbf{Coding} \rightarrow \textbf{Emission} \rightarrow \textbf{Transport} \rightarrow \textbf{Capture} \rightarrow \textbf{Decoding}$

Mutual Information: $I(\mathbf{S}; \mathbf{T})$ M tokens on an interval $\tau(M)$

$\mathbf{Max}\;h(S)\text{, }\mathbf{Done!}$

School of Engineering@Brown University

Max h(S), Done! Easy, Right!?!

Max h(S), Done! Easy, Right!?! $I(\vec{S}; T) = h(\vec{S}) - h(\vec{S}|T) = ?$

School of Engineering@Brown University

Hypersymmetries

$$h(ec{\mathbf{S}}) = h(\mathbf{S}) - \log M!$$

$$h(\vec{\mathbf{S}}) = h(\mathbf{S}) - \log M!$$

 $\{\vec{\mathbf{S}},\Omega\}\leftrightarrow \mathbf{S}$

$$h(ec{ ext{S}}) = h(ext{S}) - \log M!$$

$$\{\vec{\mathbf{S}}, \Omega\} \leftrightarrow \mathbf{S}$$

 $h(\vec{\mathbf{S}}|\mathbf{T}) = H(\Omega|\vec{\mathbf{S}}, \mathbf{T}) - h(\mathbf{S}|\mathbf{T})$

$$h(ec{ ext{S}}) = h(ext{S}) - \log M!$$

$$I(\vec{\mathbf{S}};\mathbf{T}) = \underbrace{h(\mathbf{S}) + H(\Omega|\vec{\mathbf{S}},\mathbf{T})}_{\text{The Money!}} - \underbrace{(\log M! + h(\mathbf{D}))}_{\text{constant}}$$

Channel Use Formalities

Channel Use Formalities

Channel Use Formalities

Guard Interval: $\gamma(M, \epsilon)$ Overflow Probability: ϵ

Power Constraint (tokens cost energy):

$$ho \equiv \lim_{\epsilon o 0} \lim_{M o \infty} rac{M}{ au(M) + \gamma(M,\epsilon)}$$

School of Engineering@Brown University

Set: $\gamma(M, \epsilon) = \epsilon \tau(M)$ (convenience)

Set: $\gamma(M, \epsilon) = \epsilon \tau(M)$ (convenience)

Require: $\lim_{M\to\infty} \operatorname{Prob}\{\vec{\mathbf{S}}_M \leq \tau(M)(1+\epsilon)\} = 1$

Set: $\gamma(M, \epsilon) = \epsilon \tau(M)$ (convenience)

Require: $\lim_{M\to\infty} \operatorname{Prob}\{\vec{\mathbf{S}}_M \leq \tau(M)(1+\epsilon)\} = 1$

Worst case: all tokens launched at time $\tau(M)$

Set: $\gamma(M, \epsilon) = \epsilon \tau(M)$ (convenience)

Require: $\lim_{M\to\infty} \operatorname{Prob}\{\vec{\mathbf{S}}_M \leq \tau(M)(1+\epsilon)\} = 1$

Worst case: all tokens launched at time $\tau(M)$

PUNCHLINE: all ok if E[D] exists

Omitting the Details (or summary :))

Omitting the Details (or summary :))

Set:
$$ho \equiv \frac{M}{\tau(M)}$$
 Define: $\chi \equiv \frac{\mu \text{ (first passage rate)}}{\rho \text{ (token launch rate)}}$
Require: $E[D] < \infty$ $C_m(M) = \max_{\text{hypersymm } f_{\mathbf{T}}()} \left(I(\vec{\mathbf{S}}; \mathbf{T}) / M \right)$
 $C_m = \lim_{M \to \infty} C_m(M)$
 $C_t = \rho C_m$

 \bigcirc \exists closed form results/bounds for $H(\Omega | \vec{\mathbf{S}}, \mathbf{T})$

 \bigcirc \exists closed form results/bounds for $H(\Omega | \vec{\mathbf{S}}, \mathbf{T})$

$$igcup_{f_{\mathbf{T}}()} \max h(\mathbf{S}) + H(\Omega|ec{\mathbf{S}},\mathbf{T}) \geq \mathbf{?}$$
 (ISIT'13)

 \bigcirc \exists closed form results/bounds for $H(\Omega | \vec{\mathbf{S}}, \mathbf{T})$

$$igcup_{f_{\mathbf{T}}()} \max h(\mathbf{S}) + H(\Omega|ec{\mathbf{S}},\mathbf{T}) \geq \mathbf{?}$$
 (ISIT'13)

$$\stackrel{\scriptstyle \bullet \bullet}{=} \max_{f_{\mathbf{T}}(\mathbf{0})} h(\mathbf{S}) + H(\Omega | \vec{\mathbf{S}}, \mathbf{T}) \leq \mathbf{?} \text{ (ISIT'14)}$$

Identical tokens \rightarrow timing info only

Identical tokens \rightarrow timing info only

Payloads \rightarrow **chop message into** *M B***-bit pieces**

Identical tokens \rightarrow timing info only

Payloads \rightarrow **chop message into** *M B***-bit pieces**

BUT: Payloads can arrive out of order

Identical tokens \rightarrow timing info only

Payloads \rightarrow **chop message into** *M B***-bit pieces**

BUT: Payloads can arrive out of order

Add $H(\Omega | \vec{\mathbf{S}}, \mathbf{T}) / M$ bits per token (for re-sequencing)

Identical Tokens: *c*₀ joules per token

Identical Tokens: *c*₀ joules per token

Inscribed Tokens:

Identical Tokens: *c*₀ joules per token

Inscribed Tokens:

substrate: c_1 joules per tokenpayload bit B: $B\Delta c_1$ joules per tokenavg. sequence bits K: $K\Delta c_1$ joules per token, so

Identical Tokens: *c*₀ joules per token

Inscribed Tokens:

substrate: c_1 joules per tokenpayload bit B: $B\Delta c_1$ joules per tokenavg. sequence bits K: $K\Delta c_1$ joules per token, so

 $H(\Omega|\vec{\mathbf{s}},\mathbf{T}) \leq MK \leq \log M!$

LOWER BOUNDS

using exponential first passage (the timing channel's "Gaussian")

School of Engineering@Brown University

CTW 2016

Timing-Only Bits/Joule

Payload-Only Bits/Joule

Theorem 2.

$$C_P = \frac{B}{c_1 + \Delta c_1 \left(B + \min_{\mathbf{t}} \frac{1}{M} H(\Omega | \vec{\mathbf{S}}, \mathbf{t}) \right)}$$

Theorem 3.

Payload + Timing Bits/Joule Lower Bound

$$\mathcal{R}_{P+T} pprox rac{\log\left(1+rac{\chi M}{e}
ight)+B}{c_1 + \Delta c_1 \left(B+e^{-rac{1}{\chi}\sum_{k=2}^{\infty}\left(rac{1}{\chi}
ight)^k(k\chi-1)rac{\log k!}{k!}
ight)}{rac{1}{H(\Omega|ec{ ext{S}}, ext{T})/M: ext{ average per-token order-uncertainty}}}
ight)}$$

where
$$\mathcal{R}_{P+T} \leq \mathcal{C}_{P+T}$$
.

Info per Unit Energy

$\chi \leftrightarrow$ passage rate per launch rate $c_0 = 1, c_1 = 0, \Delta c_1 = 1$

CTW 2016

Info per Passage per Unit Energy

$\frac{1}{\chi}$ \leftrightarrow launch rate per passage rate $c_0 = 1, c_1 = 0, \Delta c_1 = 1$

CTW 2016

And Now

And Now

Numerical Play Time

School of Engineering@Brown University

CTW 2016

Play Time Setup

Play Time Setup

"Binary Protein" Token Construction $4B {\rm ATP} = 3.2B \times 10^{-19} J$

"Binary Protein" Token Construction $4BATP = 3.2B \times 10^{-19} J$

Diffusion Coefficient, D in air: $\approx 10^{-5}m^2/s$ Mean First Passage Time, $E[D] \approx \frac{R^2}{2D}$

CTW 2016

Play Time

"Binary Protein" Token Construction $4BATP = 3.2B \times 10^{-19} J$

Diffusion Coefficient, D **in air:** $\approx 10^{-5}m^2/s$ **Mean First Passage Time,** $E[D] \approx \frac{R^2}{2D}$

Across a table (1*m*): $E[D] \approx 14hrs$ (need fan \bigcirc)

CTW 2016

"Binary Protein" Token Construction $4BATP = 3.2B \times 10^{-19} J$

Diffusion Coefficient, D **in air:** $\approx 10^{-5}m^2/s$ **Mean First Passage Time,** $E[D] \approx \frac{R^2}{2D}$

Across a table (1*m*): $E[D] \approx 14hrs$ (need fan \bigcirc)

Across a 0.1mm gap: E[D] = 0.5ms

$$rac{1}{\chi}=rac{
ho}{\mu}=1$$
 (w/ identical tokens)

 $rac{1}{\chi} = rac{
ho}{\mu} = 1$ (w/ identical tokens) Across a table: \approx 2 bits/day (\approx 7 × 10⁻²⁴ W) Across a 0.1mm gap: \approx 10kb/s (\approx 3.2 fW)

 $rac{1}{\chi} = rac{
ho}{\mu} = 1$ (w/ identical tokens) Across a table: \approx 2 bits/day (\approx 7 × 10⁻²⁴ W) Across a 0.1mm gap: \approx 10kb/s (\approx 3.2 fW)

$$rac{1}{\chi}=rac{
ho}{\mu}=1000$$
 (w/ $B=1000$ -bit tokens)

 $rac{1}{\chi}=rac{
ho}{\mu}=1$ (w/ identical tokens) Across a table: pprox 2 bits/day (pprox 7 imes 10⁻²⁴ W) Across a 0.1mm gap: pprox 10kb/s (pprox 3.2 fW) $rac{1}{2}=rac{
ho}{2}=1000$ (w/ B=1000-bit tokens)

 $rac{1}{\chi} = rac{
ho}{\mu} = 1000$ (w/ B = 1000-bit tokens) Across a table: \approx 2Kb/day (\approx 7 \times 10⁻²¹ W) Across a 0.1mm gap: \approx 10Mb/s (\approx 3.2 pW)

 $rac{1}{\chi} = rac{
ho}{\mu} = 1$ (w/ identical tokens) Across a table: \approx 2 bits/day (\approx 7 × 10⁻²⁴ W) Across a 0.1mm gap: \approx 10kb/s (\approx 3.2 fW)

 $rac{1}{\chi} = rac{
ho}{\mu} = 1000$ (w/ B = 1000-bit tokens) Across a table: \approx 2Kb/day (\approx 7 × 10⁻²¹ W) Across a 0.1mm gap: \approx 10Mb/s (\approx 3.2 pW)

fiber: (100Tb/s@0.2W) 5×10^{14} bits/J molecule: $\approx 3 \times 10^{18}$ bits/J

CTW 2016
Play Time

Appropriately Awed Response

Netflix/SensorNet Distribution Fantasy

Disk Farm Fantasy

Suppose token construction energy cost \ll fan energy cost

Disk Farm Fantasy

Suppose token construction energy cost \ll fan energy cost

$1\mu g \text{ RNA per second} \Rightarrow 3.6 imes 10^{15} \text{ bits/sec}$

School of Engineering@Brown University

CTW 2016

C. Rose

Timing is THE MOST Fundamental Treatment

Timing is THE MOST Fundamental Treatment

Need Bit Efficiency?

Timing is THE MOST Fundamental Treatment

Need Bit Efficiency?

Slow release with timing &/or small payload

Timing is THE MOST Fundamental Treatment

Need Bit Efficiency?

Slow release with timing &/or small payload

Need Rate Efficiency?

Timing is THE MOST Fundamental Treatment

Need Bit Efficiency?

Slow release with timing &/or small payload

Need Rate Efficiency?

Fast release with payload + timing or large payload

Timing is THE MOST Fundamental Treatment

Need Bit Efficiency?

Slow release with timing &/or small payload

Need Rate Efficiency?

Fast release with payload + timing or large payload

Scary Efficiencies

Timing is THE MOST Fundamental Treatment

Need Bit Efficiency?

Slow release with timing &/or small payload

Need Rate Efficiency?

Fast release with payload + timing or large payload

Scary Efficiencies

(beware transport latency)

A truck filled with storage media, driven across town, is a very reliable high bit rate channel.

-Comm. Theory Collective Subconscious

BUT ...

A truck filled with storage media, driven across town, is a very reliable high bit rate channel.

-Comm. Theory Collective Subconscious

BUT ...

A swarm of timed gnats

A truck filled with storage media, driven across town, is a very reliable high bit rate channel.

-Comm. Theory Collective Subconscious

BUT ...

A swarm of timed gnats with backpacks

A truck filled with storage media, driven across town, is a very reliable high bit rate channel.

-Comm. Theory Collective Subconscious

BUT ...

A swarm of timed gnats with backpacks in a breeze

A truck filled with storage media, driven across town, is a very reliable high bit rate channel.

-Comm. Theory Collective Subconscious

BUT ...

A swarm of timed gnats with backpacks in a breeze could be better.