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Abstract—The past decade has produced a large body of work
on communication channels which use chemicals to communicate.
Some work uses a finest grain model wherein the arrival times of
individual emitted particles convey information. Others consider
a related particle intensity system where the time is binned at
the transmitter/receiver and the number of particles released and
counted conveys information. Still others consider a macroscopic
model that uses an Avogradrian number of particles and thus
concentration as the information carrier. However, given the
myriad emission, carrier transport and uptake/sensing methods
studied, it has been difficult to precisely relate timing, intensity
and concentration results. Here we attempt a partial unification
through a simple upper bound applicable to any finite-mean
first-passage time transport mechanism under an assumption of
constant particle emission intensity λ̄. Our result is expressed in
terms of three quantities: the particle emission rate λ̄, the average
particle uptake rate µ, and the entropy of the first-passage time
distribution, h(D).

Index Terms—molecular channel capacity, molecular signaling,
timing channel capacity

I. INTRODUCTION

Three abstractions of communication channels which use
chemicals to communicate have been studied widely (see [1],
[2] and references therein for a history and survey of molecular
communication). These consider particle timing: the finest
grain model wherein the arrival times of individual emitted
particles convey information [3]–[6], particle intensity: a re-
lated model where the time is binned at the transmitter/receiver
and the number of particles released and counted conveys
information [7], and particle concentration: a macroscopic
model that uses an Avogradrian number of particles and
concentration imparts information [8]–[10].

Since the intensity and concentration abstractions are “pro-
cessed” versions of the timing abstraction, timing capacity
must upper bound that of the others via the data processing
theorem [11]. However, given the myriad carrier transport
and uptake/sensing methods studied, it has been difficult to
precisely relate timing, intensity and concentration results.
Here we attempt a partial unification through a simple up-
per bound applicable to any finite-mean first-passage time
transport mechanism under an assumption of constant particle
emission intensity. Our result is expressed in terms of three
quantities: the particle emission rate λ̄, the average particle

uptake rate µ, and the entropy of the first-passage time
distribution, h(D).

II. MOLECULAR CHANNEL MODELING OVERVIEW

A point to point molecular communication channel model
is illustrated in FIGURE 1. This basic arrangement is a staple
of the field and can be found in various forms in a variety of
prior work (see [2] for a survey). A message is composed,
coded into chemical emission patterns and released into a
medium which transports the chemicals to a sensor whose
output is interpreted to reconstruct the message. There are
many variations on the transport, transduction and sensing
methods, but this basic model is generally accepted.
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Fig. 1. General Molecular Communication Channel Abstraction: a
message A is coded and then transduced into a set of particle emission times
T. These particles propagate over a spatial gap R through a transmission
medium and are captured (exactly once) at corresponding times S. Since the
particles are identical, capture results in the ordered arrivals ~S. These ordered
arrivals are sensed and and decoded into the message estimate Â

To derive our bounds we will use only the central portion
of FIGURE 1 as depicted in FIGURE 2. All such models are
defined by three random variables: emission time Tm, transit
(first-passage) time Dm and arrival time Sm, and related by

Sm = Tm +Dm

Since it is reasonable to assume that the action of the transport
medium on particles is independent of the number (to within
reason), position and release times of particles, we assume the
{Dm} are independent and identically distributed (i.i.d.) with
density g(·).

As each arrival corresponds to a single emission, we can
define M -vectors T, D and S accordingly:

S = T + D (1)
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Fig. 2. Core Molecular Communication Channel: an ensemble of particles
is emitted and transported across a spatial gap. The particles are released at
(unordered) times {Tm}, propagate through a transmission medium and are
captured at corresponding times {Sm}. For identical particles, the receiver
sees ordered arrivals {~Sm} which may differ in index from the unordered
arrivals {Sm}.

However, since the particles are identical, the receiver sees
only an ordered set of arrivals

~S = PΩ(S) (2)

where PΩ(·), Ω = 1, 2, . . . ,M !, is a permutation operator and
Ω is that permutation index which produces ordered ~S from
the argument S. Thus,

~S = PΩ (T + D) (3)

and Ω is a discrete random variable associated with the chan-
nel. Equation (3) is the basic description of a “timing channel”
wherein emissions T are constructed so that information can
be extracted from ~S.

In addition to being finest grain, this abstraction is particu-
larly useful because it distills any number of emitter/receiver
geometries and transport medium properties to a single random
variable – the first-passage time D. There are many models
for the transport mechanism and resultant first-passage time
distributions [2], the most popular of which is the Lévy
distribution derived from diffusion characteristics [7] and the
related additive inverse Gaussian channel model [12].

It must be emphasized that any uncertainty introduced in
the coding/transduction of T and any degradation introduced
by the sensor/decoding which detects ~S can only, via the
data processing theorem [11], decrease channel capacity. For
instance, uncertainty in the number or concentration of re-
leased chemicals will decrease capacity. Likewise it can easily
be shown that repeated detection of the same particle at the
receiver conveys no additional information because later re-
detection times are independent of emission time given the
first detection time [3]. Likewise, if a particle is blocked
from detection at the receiver, we cannot gain information.
Therefore we assume all emission times are perfectly executed
and the detection times ~S are first detections (effectively
removing each particle from the system upon detection). In this

way a capacity analysis of the channel in FIGURE 2 provides
an upper bound on the channel capacity of FIGURE 1.

III. CAPACITY UPPER BOUND

We will assume a signaling interval of duration duration
τ(M) = τ = M/λ̄ and a guard interval γ(M, ε) as depicted
in FIGURE 3. ε is the probability that emissions during the
signaling interval arrive after the guard interval. It was proven
in [6] that so long as E[D] = 1/µ <∞, for any chosen ε we
can always find a γ(M, ε) such that the ratio γ(M, ε)/τ(M)
goes to zero for large M . Put another way, if E[D] is finite,
there exists a guard interval whose relative duration goes to
zero with large M . If E[D] =∞ then no such guard interval
exists. Thus E[D] = ∞ implies the usual channel capacity
analysis is ill-posed [5]. Interestingly, popular transport models
such as simple drift-free diffusion have infinite first-passage
times, so the capacity question is moot for such systems.
However, in any practical system there are usually physical
limits which impose E[D] < ∞ and renders the system
tractable from an information theoretic standpoint.

...
21 k

τ( Μ )

γ( Μ,ε )

Fig. 3. Successive M -Emission Channel Uses. For a given use of the particle
timing channel, the sender emits M particles over the transmission interval
τ(M) = M

λ̄
. γ(M, ε) is the waiting period (guard interval) before the next

channel use. ε is the probability that at least one particle arrives after the guard
interval. A γ(M, ε) sublinear in M (so that the ratio of the guard interval to
the signaling interval approaches zero) can be found iff E[D] <∞ [5]

Assuming E[D] = 1/µ < ∞ the maximum of the mutual
information I[~S;T] is the channel capacity, but the ordering
operation which produces ~S renders this maximization diffi-
cult. However, if we permit only nonsingular first-passage time
distributions on D, the distribution of S will be continuous and
this allows us to “fold” the density on S to obtain the density
on ~S. In turn, this allows us to consider only “hypersymmetric”
distributions on T [5], [6] where fT(t) is invariant under
permutations of t. It can then be shown that

h(~S) = h(S)− logM !

We then note the equivalence

{Ω, ~S} ⇔ S

which allows us to write

h(S|T) = h(Ω, ~S|T) = h(~S|T) +H(Ω|~S,T) (4)

and leads immediately to

I(~S;T) = h(~S)− h(~S|T)

= h(S)− h(S|T)−
(

logM !−H(Ω|~S,T)
)

= I(S;T)−
(

logM !−H(Ω|~S,T)
)

(5)



Now, if we set the signaling/symbol interval to τ = M/λ̄
where λ̄ is the average rate at which particles are emitted, then
we can define a capacity per particle [5] as

Cq = lim
M→∞

1

M
sup I(~S;T) (6)

Furthermore, if we set our time base to units of mean first-
passage time E[D] = 1/µ, the capacity in bits per passage
time is

Ct = ρCq (7)

where ρ ≡ λ̄
µ .

Equation (5) is satisfying in that I(~S;T) is expressible as
the mutual information when emission-arrival correspondence
is known (I(S;T)) less a penalty imposed by particle indis-
tinguishability (logM ! −H(Ω|~S,T)). That is, H(Ω|~S,T) is
the average amount of disorder between S and T imposed by
the channel.

However, there is also tension between maximizing I(~S;T)
and H(Ω|~S,T). That is, H(Ω|~S,T) increases when the dis-
tribution on T is clustered/structured. Consider that if all
M emissions occurred at once, the mapping between ~S and
T would be arbitrary and logM ! − H(Ω|~S,T) = 0. In
contrast if the Tm are correlated, then the S are also correlated
resulting in a reduction of h(S). Similarly, if the clustering is
owed to emission intensity modulation with time (even while
maintaining independence of the Tm) then the density of each
Sm will be relatively concentrated in certain regions of the
signaling interval and the upper limit of h(Sm) reduced.

For analytic simplicity, we will assume that emission times
{Tm} are independent with probability density fT (·). This
also comports well with the physics of concentration-based
models where identical particles are released en masse but
with temporal imprecision. For large τ and M , the emission
independence assumption implies that on any small (relative
τ ) interval the ordered emissions ~T are approximately Poisson
with time-varying rate

λ(t) = MfT (t) (8)

A. An Upper Bound on I(S;T)

First consider that owing to the presumed hypersymmetry
of T we have

I(S;T) ≤MI(S;T ) = M(h(S)− h(D))

where
fS(s) = (fT ∗ g)(s)

with equality if the Tm are i.i.d. so that

max
fT

I(S;T) ≤M max
fT

I(S;T ) = M max
fT

h(S)−Mh(D)

Then, since the probability of arrivals beyond τ(M)+γ(M, ε)
is vanishingly small we must have

h(S) ≤ log
(
τ +O(M−(1+δ))

)

where δ > 0. This implies that the mutual information between
S and T is strictly upper bounded by

I(S;T ) ≤ log
(
τ +O(M−(1+δ))

)
− h(D)

It is easily shown that an asymptotically uniform density
on S can be achieved with a uniform distribution on T as
τ → ∞. Thus, for s � E[D], fS(s) ≈ 1

τ and the mutual
information I(S;T ) is asymptotically maximized by uniform
fT (t) so that

max
fT ()

I(S;T ) ≤ log τ − h(D) (9)

It is worth emphasizing that the bound of equation (9) holds
for any non-singular finite-mean first-passage density g(·).

B. An Upper Bound for H(Ω|~S,T)

H(Ω|~S,T) is the discrete entropy of the correct mapping
between T and ~S given both T and ~S. As the mapping is
one-to-one, there are exactly M ! possibilities for Ω only some
of which are feasible. In [5] and [6], explicit expressions for
H(Ω|~S,T) were found for exponential first-passage distri-
butions. Here we derive an upper bound on H(Ω|~S,T) for
any finite-mean first-passage density under an assumption of
constant particle emission intensity λ̄.

We begin by reviewing the initial development of [5] (which
we repeat here in part for clarity) where it was shown that if
we define |Ω|~s,t as the number of permissible mappings of
~s→ t, then

H(Ω|~S,T) ≤ E~S,T
[
|Ω|~S,T

]
(10)

with equality (assuming g(·) is nonzero everywhere) iff the
first-passage density g(·) is exponential. Additionally, if we
allow for g(x) which can be identically zero on regions of
nonzero measure (x ≥ 0), equality in equation (10) also holds
if g(·) is binary, taking on only two values 0 and c – the
simplest example being a compact uniform distribution.

In counting admissible mappings, we note that knowledge of
T implies knowledge of ~T. This allows us to define contiguous
“bins” Bk = {t|t ∈ [~Tk, ~Tk+1)}, k = 1, 2, . . . ,M (~TM+1 ≡
∞) and then define σm as bin occupancies. That is, σm = r if
there are exactly r arrivals in Bm. The benefit of this approach
is that the σm do not depend on whether ~s or s is used to
count the arrivals. Thus, expectations can be taken over S
whose components are mutually independent given the T and
no order distributions for ~S need be derived. Put another way,
hypersymmetry of T implies

|Ω|~S,T = |Ω|~S,~T = |Ω|S,~T = |Ω|S,T (11)

To determine the random variable |Ω|~S,T we define

ηm =

m∑
j=1

σj

the total number of arrivals of ~S up to and including bin Bm.
Clearly ηm is monotonically increasing in m with η0 = 0 and
ηM = M . We then observe that the σm arrivals on [~Tm, ~Tm+1)
can be assigned to any of the ~T1, ~T2, . . . , ~Tm known emission



times except for those ηm−1 previously assigned. The number
of possible new assignments is (m−ηm−1)!/(m−ηm)! which
when applied iteratively leads to

|Ω|~S,T =

M∏
m=1

(m− ηm−1)!

(m− ηm)!
=

M−1∏
m=1

(m+ 1− ηm) (12)

which implies

H(Ω|~S,T) ≤ E~S,T

[
M−1∑
m=1

log(m+ 1− ηm)

]
(13)

We then define the random variable

X
(m)
i =

{
1 Si < ~Tm+1

0 otherwise

for i = 1, 2, . . . ,m. The PMF of X(m)
i is then

p
X

(m)
i

(x) =

{
G(~Tm+1 − ~Ti) x = 1

Ḡ(~Tm+1 − ~Ti) x = 0
(14)

where we note that for a given m, X(m)
i and X

(m)
j are

independent, i 6= j, and G(·) is the CDF of the causal first-
passage density g(·). Ḡ(·) = 1 − G(·) is the corresponding
CCDF. We can then write

ηm =

m∑
i=1

X
(m)
i

so that

H(Ω|~S,T) ≤ ES,T

[
M−1∑
m=1

log

(
m+ 1−

m∑
i=1

X
(m)
i

)]

= ES,T

[
M−1∑
m=1

log

(
1 +

m∑
i=1

(1−X(m)
i )

)]
(15)

Via Jensen’s inequality we have

H(Ω|~S,T) ≤
M−1∑
m=1

log

(
1 +

m∑
i=1

ES,T

[
(1−X(m)

i )
])

(16)

Now consider that X(m)
i is a function of Si, ~Tm+1 and ~Ti.

Given ~Tm+1 and ~Ti, we have

ES|T

[
1−X(m)

i

]
= Ḡ(~Tm+1 − ~Ti) = Ḡ(∆m+1−i) (17)

where ∆m+1−i ≡ ~Tm+1 − ~Ti. If fT (·) is uniform, then on
any interval � τ the ~T are approximately samples of a
Poisson process with constant rate λ(t) = λ̄. The ∆ji are
then approximately Erlang with parameter λ̄.

f∆ji(x) =
λ̄(λ̄x)j−i−1e−λ̄x

(j − i− 1)!

so that

ET

[
Ḡ(∆m+1−i)

]
=

∫ ∞
0

λ̄(λ̄x)m−ie−λ̄x

(m− i)!
Ḡ(x)dx (18)

We then note that
m∑
i=1

λ̄(λ̄x)m−ie−λ̄x

(m− i)!
= λ̄e−λ̄x

m−1∑
k=0

(λ̄x)k

k!
≤ λ̄ (19)

so that

H(Ω|~S,T) ≤
M−1∑
m=1

log

(
1 +

∫ ∞
0

λ̄Ḡ(x)dx

)
= (M − 1) log(1 + ρ) (20)

where ρ = λ̄/µ. Equation (20) (a more simply-derived special
case of Theorem∼ 9 in [6]) is a general upper bound on
H(Ω|~S,T) for any first-passage time density g(·) with mean
1/µ at constant particle emission rate λ̄ .

C. An Upper Bound on Ct
Through equation (5), equation (9) and equation (20) we

have established an upper bound on channel capacity at con-
stant particle emission rate. That is, combining equation (5),
equation (9), equation (20) and using Stirling’s approximation
with the identity λ̄ = M/τ we have

I(~S;T) = (M − 1) log(1 + ρ)−M(log
λ̄

e
+ h(D))

− 1

2
log 2πM (21)

Applying equation (6) and equation (7) leads to our main
results:

Theorem 1: Constant Emission Rate Capacity Bound:
The upper bounds on Cq the per-particle capacity and Ct the
per-first-passage time capacity of the point-to-point particle
timing channel with constant emission rate are given by

Cq ≤ log(1 + ρ)− log
λ̄

e
− h(D) (22)

and

Ct ≤ ρ
(

log(1 + ρ)− log
λ̄

e
− h(D)

)
(23)

where λ̄ is the rate of particle emission, h(D) is the entropy
of the first-passage density g(·) with mean 1/µ and ρ = λ̄/µ.

Proof: Theorem 1 See exposition leading to Theorem 1. •
If D is exponential with parameter µ, then h(D) = 1−logµ

and we have

C(e)
t ≤ ρ log

(
1 +

1

ρ

)
(24)

If D is uniform with mean 1/µ, then h(D) = log 2
µ and we

have

C(u)
t ≤ ρ

(
log

(
1 +

1

ρ

)
+ log

(e
2

))
= C(e)

t + ρ log
(e

2

)
(25)

IV. DISCUSSION AND CONCLUSION

In FIGURE 4 we plot the upper bound of equation (23)
and the lower bound from [5] for exponential first-passage
with mean 1/µ. The upper bound asymptotes to 1 which is
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consistent with our previous inability to find input distribu-
tions fT(·) that show unbounded capacity with increasing ρ.
However, since an exponential distribution maximizes entropy
subject to a mean constraint [13], exponential first-passage
minimizes the upper bound of equation (9). Thus, first-passage
densities with the same mean but lower entropy would seem
to allow for linear growth in particle intensity ρ as suggested
by equation (25).

Of course, it must be noted that the upper bound for
H(Ω|~S,T) of equation (20) reflects only the mean first-
passage time and not the amount of disorder imposed by
different first-passage time distributions. That is, a distribution
with a given mean could have arbitrarily small entropy which
would tend to decrease H(Ω|~S,T) and thus increase the
penalty M !−H(Ω|~S,T) in equation (5). So, there are likely
tighter upper bounds on H(Ω|~S,T) which explicitly include
entropy, h(D), in addition to the first-passage time mean 1/µ.

Our results do not directly apply to channels where particles
never arrive at the receiver. Nonetheless, it is worthwhile to
consider specific methods of non-arrival. If non-arrival results
from excessive transit time (a fixed particle lifetime or a heavy-
tailed first-passage distribution with infinite mean), then our
results do not apply. However, in cases where particles are
assumed to randomly “denature” independent of transit time
(e.g., [7]), our results do provide an upper bound since random
particle erasure can be interposed between reception (first-
passage) and detection.

By their finest grain nature, the timing channel bounds must
apply to all cases where independently emitted particles are
used to convey information including most especially con-
centration channels. However, concentration channels stipulate
time-varying particle emission rate while we have imposed
a constant rate. Nonetheless, some insight can be gained by
considering that if λ(t) varies slowly with respect to the rate
µ, we might credibly replace ρ in equation (20) with ρ(t) and
model such a system as successive channel uses at constant
(but differing) rates ρ` = ρ(`∆t) with E[ρ`] = ρ. Since

equation (23) is at most linear in ρ, using ρ` 6= ρ confers
no advantage and will at high rates be a disadvantage. So at
least for slowly varying λ(t) it seems likely that concentration
channels will obey the bounds of equation (23).

Finally, we have not considered the effect of correlations
between the Tm (as opposed to emission rate modulation), so
the question of whether correlation can be used to increase
the sum H(Ω|~S,T) +h(S) even while it reduces h(S) is still
open.

Overall, it is our hope that this work helps unify the field of
molecular communication by allowing researchers to not only
quickly compare results across different channel types, but also
by supplying a simple-to-use sanity-check on capacity results.
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