
High Speed Chemical Vapor Communication Using
Photoionization Detectors

Mustafa Ozmen, Eamonn Kennedy, Jacob Rose, Pratistha Shakya, Jacob K. Rosenstein, and Christopher Rose
School of Engineering

Brown University, Providence, RI
Email: mustafa_ozmen, eamonn_kennedy, jacob_rose1, pratistha_shakya, jacob_rosenstein, christopher_rose@brown.edu

Abstract—We consider data transfer between a chemical vapor
emitter and photoionization detectors (PIDs) under constant velocity
gas flow in a constrained environment (flow tube). We show that the
system, though stochastic owing to flow unsteadiness, is (on average)
linear and then characterize the channel using a Karhunen-Loeve
(KL) expansion. We measure bit error rates using straightforward
detection methods in the KL-produced signal space. Data rates of 20
bps are easily achieved at ≈ 10−3 error rate and we suspect that
similarly low error rates are achievable at much higher bit rates
using suitable adaptive equalization methods.

Index Terms— Molecular Communication, Chemical Communica-
tion, Gas Flow Channel

I. INTRODUCTION

Communication using chemicals in a gas flow [1] is an active
area of research owing to its potential utility in environments
hostile to electromagnetic or acoustic radiation. Since the first
demonstration of molecular communication [1], a number of re-
searchers have studied chemical communication between emitters
and sensors in different environments. Some studies have been
theoretical, seeking upper and lower bounds for the capacity of
molecular communication channels [2]–[4] and recently nonlinear
techniques have been applied to improve data rates [5]. Nonethe-
less, bit rates for molecular communication in a constrained but
generally turbulent environment much above a bit per second
(bps) at low error rates have remained elusive.

Here we consider a refined version of the exquisitely simple [6]
experiment wherein chemical vapor (isopropanol) is released into
steady airflow and sensed downstream. Here vapor is “puffed”
through a tube and sensed using photoionization detectors (PIDs)
as shown in FIGURE 1. Without characterizing the airflow in the
tube – which we know through separate smoke tracer experiments
is unsteady/turbulent – we will show that using relatively simple
modulation and detection methods allows data rates of 20 bps
at an error rate of approximately 10−3. Furthermore, we suspect
similarly good performance can be achieved at much higher bit
rates by employing adaptive equalization methods.

II. EXPERIMENTAL SYSTEM

An experimental demonstration system was constructed to
explore high-speed chemical vapor detection and signaling [7]. As
illustrated in FIGURE 1, a solenoid valve controls the release of
solvent vapors into an enclosed flow tube, where they are carried
by a background airflow towards several photoionization detectors
(200B miniPID, Aurora Scientific). The bulk airflow is controlled
by two fans, while the transmitted vapor flow rate is regulated by
a variable-area flowmeter. For the data presented here, the bulk
air velocity is v ≈ 4 m/s, the distance between the transmitter

Fig. 1. Diagram of the benchtop experimental setup. The total tube length was 3.3
m. Sensor inlets could be placed at varying distance from the solenoid valve input
with orientations either normal or orthogonal to the flow-line. In the configuration
shown, all 4 PID sensors are located at D = 0.8 m and directed orthogonal to the
flow-line (inset photograph, 2 sensors incident into the flow tube). Wind speed was
adjusted by computer control of the two parallel-flowing fans. This configuration
is a modification of a previous reported setup [7].

and detectors is 1.4 meters, and the diameter of the flow tube is
0.07 meters (so the path aspect ratio is 20:1).

III. THE CHANNEL

A sequence of brief (with duty cycle much less than the pulse
period) vapor pulses are released (logical 1) or not (logical 0)
into the flow tube. If we denote the time course of emitted vapor
as x[n], the system produces output y[n] in response as

y[n] = S{x[n]}+ w[n] (1)

where S{} summarizes the effect of fluid transport on a chemical
released into the system with concentration time course x[n],
and w[n] is the noise process added at the downstream sensor
(receiver).

A. Linear or Nonlinear?

Fluid flow can be highly nonlinear, and nonlinearity introduces
sometimes difficult analytic complications. For instance, there
is no requirement for continuity and even slight variations ε
in the input could yield dramatically different outputs under
arbitrary distance measures d[S{x[n]}, S{x[n] + εz[n]}] where
ε is sufficiently small that |εz[n]| � 1. And even in cases where
small input deviations yield similar outputs, nonlinearity implies
that if y1[n] corresponds to input x1[n] and y2[n] corresponds
to input x2[n], S{} will NOT in general obey superposition. The
implication for effective communication is that a map between all
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Fig. 2. Three input bit patterns, A (orange line), B (blue line) and C (gray line)
which satisfy A + B = C and their corresponding responses are shown. The
extent of linearity can be visually assessed by the comparison of the C response
with the superposition of the responses to its component patterns A+B (dotted
black line).

input sequences and their corresponding output sequences must
be constructed. The virtual impossibility of such a task (absent
severely circumscribed inputs) is the reason why we often seek
a small deviations approximation to a nonlinear system about
"operating points" where we can assume the system behaves
almost linearly. So, it was important to investigate the linear-
ity/nonlinearity of our system.

As depicted in FIGURE 1, a chemical is injected into a flow
and detected by sensors downstream. We note that while the
flow solutions can be nonlinear, unless the chemical itself – not
the injection process – affects flow, then the system is always
linear, although certainly time-varying, owing to factors like
wind speed variation. Put another way, if the chemical injection
process itself changes the air flow, then the air flow patterns will
be dependent on chemical injection, regardless of downstream
concentration profiles, and thus potentially provoke nonlinear
response. Alternatively, if the chemical is simply “along for the
ride” it presence/absence would not affect flow. 1

We tested system linearity by noting that if emission does affect
the flow pattern, we would not expect (owing to nonlinearity
of the underlying Navier-Stokes equations) a superposition of
different temporal emission concentration patterns to result in
a superposition of the respective concentration patterns. This
hypothesis is explored in FIGURE 2 where the average responses
to two input bit sequences A and B were recorded separately and
then the average response to input C = A+B was recorded. We
see that S(A)+S(B) ≈ S(A+B). In fact, the difference between
the cumulative pattern S(A+B) and the sum of its components
is comparable. This result suggests our system is roughly linear.

B. Linear But Stochastic: a Karhunen-Loeve approach

Since we can reasonably assume S{} linear, we can express
y[n] as

y[n] =
∑
k

x[k]h[n− k] + w[n] (2)

1We ignore "butterfly effects" through which the behavior of strongly chaotic
systems can diverge dramatically even with infinitesimally small input variations.
That is, we will assume that chemical presence/absence does not affect the
properties of the carrier fluid over time scales of interest.
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Fig. 3. Concentration time course for four consecutive puffs at a single sensor.

where h[n] is the impulse response of the system. Equation
(2) is a standard additive noise communication channel model.
However, we have also seen experimentally that the response to a
chemical puff varies from puff to puff stochastically as illustrated
in FIGURE 3. It is worth noting that the responses shown in
FIGURE 3 are for successive puffs (i.e., not distant in time). Thus,
unlike typical communication channels, the channel variation is
rapid compared to the symbol rate. Furthermore, not only does
the amplitude of the response vary, but the very shape of the
response varies.

To model such a system, we rewrite equation (2) as

Y [n] =
∑
k

x[k]H[n− k] +W [n] (3)

where H[n] is a stochastic process impulse response, W [n] is the
sensor noise process and Y [n] is the sensor output process (hence
the use of upper case variables). That is, H[n] is a stochastic
process that we must characterize through observation of Y [n]
under assumptions about W [n].

To determine these characteristics, we sounded the channel
with brief chemical pulses (2ms “puffs” – denoted as “1”s) and
recorded the time course of concentration at each downstream
sensor to obtain a vector of concentration samples, Y, as in
equation (3). Care was taken to adjust the repetition rate and
wind speed so that prior puffs did not affect subsequent puff
responses. These individual vectors were concatenated to form an
observation vector U` of dimension K = NsM where Ns is the
number of sensors, M is the number of samples from each sensor
and ` is the puff index. Defining H1 as the puff-present event,
the ensemble of responses to L puffs, {U`}, ` = 1, 2, · · · , L was
used to determine a sample mean vector

µU|H1
=

1

L

L∑
`=1

U` (4)

and a sample covariance matrix

KU|H1
=

1

L

(
L∑
`=1

U`U
>
`

)
− µU|H1

µ>U|H1
(5)

for large L.
For simplicity, we assume each of the U` is a jointly-Gaussian

vector – a not too unreasonable assumption owing to the turbulent
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Fig. 4. The three largest-λ principal components of V for concatenated sensor
response U as described in the text. The symbol rate is 10 bps.

flow structure and the response at a given point is effectively
the sum of many random variables. As such we then sought
to derive a suitable vector space onto which we could project
the U measurements that would result in mutually independent
(or at least uncorrelated in the general case) random variables.
Thus, we performed a Karhunen-Loeve expansion [8]–[10] on the
covariance matrix KU|H1

to obtain an orthonormal eigenvector
matrix V and diagonal matrix Λ which contains the associated
eigenvalues, {λk}. That is

KU|H1
= VΛV>.

It is worth noting that V and Λ mainly capture the random nature
of the pulse height and shape induced, ostensibly, by turbulent
flow. That is, V characterizes H[n] not W [n] (which is relatively
small compared to the response pulses as shown in FIGURE 3.

V can then be used to produce a new vector of uncorrelated
random variables. The columns of V represent the basis for
dimensions of Karhunen-Loeve expansion. In FIGURE 4, we
illustrate a few columns of V. In this case, V is generated from
the concatenated impulse responses of Ns = 4 sensors.

Z = V>U (6)

with mean µZ|H1
= V>µU|H1

and covariance KZ|H1
= Λ.

We then have

fU|H1
(u|H1) =

e
− 1

2 (u−µU|H1
)>KU|H1

−1(u−µU|H1
)∣∣2πKU|H1

∣∣1/2
which implies that given H1,

fZi|H1
(zi|H1) =

1√
2πλ2i

e
−

(zi−µZi|H1
)2

2λ2
i (7)

where µZi|H1
is the ith component of the mean vector µZ|H1

=

V>µU|H1
.

Similarly, if we denote the no puff event as H0 and derive an
empirical mean vector µS|H0

and covariance matrix KU|H0
, we

have

fZ|H0
(z|H0) =

e
− 1

2 (z−µZ|H0
)>(V>KU|H0

V)
−1

(z−µZ|H0
)∣∣2πV>KU|H0

V
∣∣1/2 (8)

where µZ|H0
= V>µU|H0

.
Assuming equiprobable H1 and H0 we can then use the

conditional densities on Z to derive a likelihood ratio test for
minimum probability of error as

fZ|H1
(z|H1)

fZ|H0
(z|H0)

H1
>
<
H0

1 (9)

which becomes
N∏
i=1

1√
2πλi

e
− (zi−µ1i)

2

2λi∣∣2πV>KU|H0
V
∣∣− 1

2 e−
1
2 (z−µ0)T (V>KU|H0

V)
−1

(z−µ0)

H1
>
<
H0

1

(10)
which can be simplified to

T (z)

H1
>
<
H0

γ (11)

where the test statistic, T (z), is

T (z) = (z−µ0)
T
(
V>KU|H0

V
)−1

(z−µ0)−
N∑
i=1

(zi − µ1i)
2

λi
(12)

and the threshold, γ, is

γ =

(
N∑
i=1

lnλi

)
− ln

∣∣V>KU|H0
V
∣∣ (13)

C. Choosing the Best Dimensions

We note that, N , the dimension of the KZ|H1
, can be large

and that many of the eigenvalues λi may be small relative to the
noise in that dimension. For this reason, we seek to use only the
“best” D dimensions for our decision rule. However, owing to the
experimentally observed fact that the noise process W [n] is not
itself white, the largest eigenvalue dimensions of the Karhunen-
Loeve expansion for the channel response H[n] may not actually
provide the best performance.

While we could ostensibly formulate this as an optimal expur-
gation problem, we instead ask a simpler question. Suppose we
could use only one dimension to make our decision. How would
we choose? A simple answer is to employ a heuristic: first, we
compose the likelihood ratio test for each dimension (in terms
of the parameters µ0i, µ1i, σ2

i and λi where µ0i and σ2
i are the

mean and variance, respectively, of Zi when no puff is presented
(H0)), and then we calculate the associated probability of error.

Experimental observations suggest that to a first approximation
the Zi are normally distributed under both H0 and H1. So, the
univariate likelihood ratio is simply

1√
2πλi

e−(z−µ1i)
2/2λi

1√
2πσ2

i

e−(z−µ0i)2/2σ2
i

H1
>
<
H0

1 (14)

If we shift z left by µ0i and then normalize by
√
λi, we can

naturally define µ = µ1i − µ0i and σ2 = λi/σ
2
i so that equation



(14) becomes

1√
2πσ2

exp
{
− (z−µ)2

2σ2

}
1√
2π

exp
{
− z22

} H1
>
<
H0

1 (15)

The decision regions for equation (15) are illustrated in FIG-
URE 5 for σ = 2 and µ = 1. Equation (15) reduces to
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Fig. 5. Decision region illustration for equation (15) for µ = 1 and σ = 2.

z2

2
− (z − µ)2

2σ2

H1
>
<
H0

ln(σ). (16)

Then, assuming σ ≥ 1 and defining η = µ
σ2−1 and ζ =

µ2+2σ2 ln(σ)
σ2−1 , we can rewrite equation (16) as

z2 + 2ηz − ζ
H1
>
<
H0

0 (17)

We note that while σ < 1 is possible, it would imply that
noise power dominates signal power for that dimension. Thus,
we ignore dimensions where σ < 1 in what follows. In addition,
since our covariance estimation window is limited to 800 samples,
we will also restrict our selection to dimensions with significant
signal power (≈ maximum/1000).

Simplifying the inequality of equation (17) results in the
decision regions

Ĥ0 : −η −
√
η2 + ζ ≤ z ≤ −η +

√
η2 + ζ (18)

which is a symmetric interval of size 2
√
η2 + ζ centered at −η,

and

Ĥ1 : z > −η +
√
η2 + ζ or z < −η −

√
η2 + ζ (19)

The probability of error is

Pe = Prob(say H1|H0)Prob(H0) + Prob(say H0|H1)Prob(H1)
(20)

340 360 380 400
0

0.1

0.2

0.3

10-4

10-3

10-2

10-1

Dimension index

Si
gn

al
 p

ow
er

Pr
ob

ab
ilit

y 
of

 e
rro

r

Fig. 6. Probability of error and signal power vs. dimension index for 10 bps data.
Larger dimension index implies larger associated eigenvalue.

Then, assuming equiprobable H1 and H0, the probability of error
is given by

Pe = 1
2Prob

(
Z > −η +

√
η2 + ζ

∣∣∣H0

)
+ 1

2Prob
(
Z < −η −

√
η2 + ζ

∣∣∣H0

)
+ 1

2Prob
(
−η −

√
η2 + ζ ≤ Z ≤ −η +

√
η2 + ζ

∣∣∣H1

)
(21)

which reduces to

Pe = 1
2Q
(
−η +

√
η2 + ζ

)
+ 1

2Q
(
η +

√
η2 + ζ

)
+ 1

2Q

(
−η−
√
η2+ζ−µ
σ

)
− 1

2Q

(
−η+
√
η2+ζ−µ
σ

) (22)

Equation (22) allows us to rank the dimensions of z according to
their individual probability of error performance in terms of µ0i,
µ1i, σ2

i and λi. We plot Pe in FIGURE 6 for dimensions with
signal power larger than ≈ 0.001 the maximum. The eigenvalues,
ordered from largest to smallest in terms of signal power, are
also shown in FIGURE 6. Of course, the analysis leading to
equation (22) does not tell us which ensemble of D dimensions
is the best expurgated version of equation (13). However as a first
approximation, sequential application of the equation (22) metric
seems reasonable and yields good performance.

D. A Simple Experiment

To test the method, 4 sensors were placed at the tube outlet
(1.4m from the emission source) and the resulting responses
were recorded for bit rates of 10, 20 and 30 bps. The training
set consisted of 800 bits from which KU |H0

and thence V
were derived. The D best dimensions were selected according
to equation (22). It should be noted that we searched across
a number of dimensions. For larger D, performance suffered
owing to the inclusion of noisier dimensions. For smaller D,
performance suffered from less available signal energy. Typically,
the optimal D was in the range 5 ≤ D ≤ 20. Once the proper
number of dimensions and associated thresholds were established
by training, we then applied the resulting detection method to the
full data set.
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FIGURE 7 shows the probability of bit error rate for the full
data set as a function of threshold level γ. We see that Pe is
robust with respect to the choice of γ for 10 and 20 bps. So, it
is unsurprising that when the threshold calculated using training
data is applied to the full data set, we achieved similarly low Pe.
At 10 bps, the channel responses do not overlap and there were
no errors over 19000 test bits. At 20 bps, Pe was 0.0011, also
over 19000 test bits (compared to the minimum from FIGURE 7
of 0.0009). At 30 bps, Pe rose to 0.056 (over 4000 bit intervals)
owing to increasing intersymbol interference (ISI). In the next
section we consider methods through which ISI can be mitigated.

IV. INTERSYMBOL INTERFERENCE

Higher symbol rates produce ISI which could potentially be
mitigated through equalization and/or decision feedback methods
[11]. Although we pursue neither such method here, it is worth
providing an analytic framework for ISI that takes into account
the somewhat peculiar stochastic nature of this channel. Thus,
consider an extension of equation (2) to

Y [n] =

M∑
i=M

b-iH[n−Ni] +W [n] for n = 0, · · · , N − 1 (23)

where N is the duration of the stochastic impulse response H[n]

and 2M is the number of incursions, fore and aft, on the 0th bit
interval.

Then consider the simplest case of equation (23) where M =
1 so the b0 bit interval is corrupted by both b-1 and b1. As is
typical for ISI/equalization problems, we assume some decision
process has provided correct decoding of the prior bit, b-1, and we
must formulate a decision rule for the current bit, b0, essentially
ignoring the interference contribution of the following bit, b1. To
this end, we measure the channel response covariance conditioned
on two priors: cov(Y|b0 = 1, b-1=0) and cov(Y|b0 = 1, b-1=1)
to obtain two eigenspaces V0 and V1, respectively from which we
form zi = V Ti Y for i = 0, 1. Assuming equiprobable bits, the
likelihood ratio test when b-1 = i is given as

p(zi|b0=1, b-1= i, b1=0)+p(zi|b0=1, b-1= i, b1=1)

p(zi|b0 = 0, b-1= i, b1=0)+p(zi|b0=0, b-1= i, b1=1)

H1
>
<
H0

1.

(24)

and we apply the appropriate decision rule based on our decision
about b-1. Using an ad hoc method to obtain “good dimensions”
similar to equation (22), Pe dropped from 0.056 to 0.030, and
we were able to achieve a Pe = 0.15 at 40 bps. Note that at 40
bps, each bit interval is corrupted by roughly four adjacent bits
(two fore and two aft), so “equalization” methods that accounted
for more than one bit of ISI could improve performance.

V. CONCLUSION

We measured the output of multiple PID sensors in response to
a chemical puff emitted within a meter-scale channel at constant
velocity gas flow. The response between input and output was
found to be stochastic due to unsteady flow, but was shown (on
average) to be linear. The channel description was formalized
and an appropriate signal space derived from signal covariance
estimates. Using a simple likelihood ratio test, a data rate of
10 bps was achieved without errors. Increased data rate led
to ISI and thus increased error rate (10−3 at 20 bps, 0.056
at 30 bps). We then framed the ISI problem more carefully
and using rudimentary methods were able to achieve a Pe of
0.15 at 40 bps and reduce Pe to 0.03 for 30 bps. As much of
the previous molecular/chemical communications literature deals
with diffusive transport mechanisms where accurate bit rates
are less than 1 bps, this work improves the prospects for fast
embedded molecular communication in both medical, device and
industry applications by approximately two orders of magnitude.
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