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Abstract—Recent years have shown a rapid increase in the
amount of study devoted to communication systems where
molecules are information carriers. The reasons for such interest
are varied, from seeking to understand the ubiquity of molecular
communication in biology to the search for communication
methods in media where electromagnetic and acoustic methods
are inappropriate, to exploring the energy efficiency of methods
where where some delivery latency can be allowed. With this
tutorial on recent discrete molecular communication research
we seek to organize the work into broad categories and thence
under the umbrella of what can be called “inscribed matter
communication” – where information is conveyed through assem-
blage, release and capture of matter as opposed to transmission
of photons or phonons. We will begin by considering discrete
passage of molecules between senders and receivers and argue
that matter emission and detection even at Avogadrian levels is a
subset of the discrete problem, all with a focus on point-to-point
communication. In this way we hope to contextualize current
work within a larger fundamental framework, illuminate the
hard boundaries of what is known and then stimulate further
research on this fascinating topic.

I. INTRODUCTION

The earliest form of biological communication was arguably
molecular. Primitive organisms navigated their environments
seeking nutrients and avoiding the noxious. They sensed
chemicals, moved along concentration gradients and up/down-
regulated various cellular machines in ways that benefited
survival. One could even argue that before the first organisms
were organisms, chemical communication was the norm, but
perhaps it is best to stop there before we lose sight of our goal
here – the contention that molecular communication is ancient
– and fall into the “it’s turtles all the way down” trap about
precedence [1].

In contrast, modern communication is predominantly elec-
tronic/acoustic and communication theory was developed pri-
marily around these physical modalities. Nonetheless, commu-
nication and information theory are fundamental and can be
applied to any system where information is exchanged. Our
field therefore seeks to quantitatively understand the benefits
and liabilities of molecular communication with both an eye
toward exploiting such methods when electromagnetic or
acoustic approaches are infeasible, and toward understanding
why biological systems may have evolved the ways they did.
Thus, everything old is new again as we consider molecular
communication through a modern technological lens.

After such portentous rumblings about the utility and power
of molecular communications research, it seems prudent to
rein in expectations. We could certainly muse about fantastic
potential applications and consider in detail the plethora of
models articulated over the years since the papers which
arguably launched the area [2]–[5] appeared. We could catalog
the myriad biological instances of molecular communication

as well. However, our purpose here is very simple. We seek
only to provide an understandable, streamlined but unified
framework for evaluating the capacity of any point-to-point
molecular communication system. We also attempt to be
rigorous but not so mathematically dense as to be discouraging
[6], [7]. In the same vein, we do not provide a compendium
of all work in the field, but rather, pick and choose some
illustrative examples while also providing citations to more
encyclopedic reviews such as [4], [8], [9]. Finally, we will not
consider detailed biological systems, although we may gently
point to some well known ones for illustration. Our hope is that
this paper will help researchers to better see the connections
between their work and readily identify bounds. And for those
not yet part of the molecular communication fold we hope
that the beauty, simplicity and potential scope of molecular
communication systems will be enchanting enough lure you
in.

To that end we will begin with a finest grain (micro) abstrac-
tion of point-to-point molecular communication applicable to
any system. We will then explore a number of variations on
this basic theme, but with the common feature that individual
or small numbers of molecules are used as the information
carriers. We will always assume perfect detection since via
the data processing theorem [10] the capacity of any channel
cannot be increased by post-processing. We will also briefly
consider cases where the information particles themselves
can carry information payloads. Then, since most laboratory-
realizable systems use Avogadrian numbers of molecules1

for signaling, we will consider (macro) models where con-
centration (as opposed to individual molecules) is detected.
These macro systems are often analytically similar to more
standard “X”-shift-keying communication systems and use
similar signal corruption (noise) models. Nonetheless, we will
always be careful to interpret such work through the lens
of our micro models since, via the data processing theorem,
the capacities of macro signaling systems must lie within the
bounds dictated by micro models.

II. A PICTORIAL OVERVIEW

We feel the basic idea of molecular communication is most
easily understood through a series of pictures to which we will
add conceptual and mathematical complications as we go.

A. Particle-Based Systems
The simplest scenario is depicted in Fig. 1 where a chem-

ical emitter releases identical molecules (or particles) into a

1We estimate that [11]–[13] expended on the order of 1017 to 1019

molecules per emission and thus Avogadrian (6.022 × 1023) or more
molecules over the course of 10-1000 kb messages.
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Fig. 1. A chemical source emits identical molecules/particles (solid circles)
over time that waft through some medium and are detected at a receiver by
specialized receptors. The fundamental control/detection abstraction quantities
are the ordered departure times {Ti} from the emitter, and the ordered
detection times {Sj} at the receiver as described in the text. Particles may
be detected multiple times (or not at all) at the receiver, depending upon the
(usually stochastic) particle transport method at play.

medium and those particles are transported to and detected
by a receiver sensitive to that chemical. Loosely speaking,
information could be conveyed by the timing and number
of molecules released and it is tempting to immediately
plunge in and model the multiplicity of transport and uptake
mechanisms. However, we pause to note the first inviolable
mathematical abstraction under an assumption of identical
particles is a random set of release times (hence, uppercase)

T = [T1, T2, · · · , TM ] (1)

and an ordered sequence of random detection times at the
receiver

~S = [~S1, ~S2, · · · , ~SM ′ ]. (2)

We assume this process of a “channel use” is repeated se-
quentially and independently so that asymptotic information
theoretic capacity bounds based on mutual information may
be applied.

It is vital to understand that no matter what sophisticated
methods are applied, the capacity of the molecular commu-
nication channel between emitter and receiver is completely
determined by how we structure the probability density of
T and how we decode the corresponding ~S. That is, all
molecular communication channels are, at their core, timing
channels. Put another way, timing channels are the finest grain
description of all molecular communication channels.

It is first important to note that the ordered arrivals Si may
or may not correspond (in index) to the ordered emissions
Ti since owing to particle motion uncertainty, some particles
may take longer to arrive at the receiver. This complication
requires us to apply a bit of mathematical legerdemain [6],
[7], but there is a more subtle issue as well. That is, it is even
more important to notice that M ′ may or may not be equal to
M for at least two possible reasons.

First, the depiction of Fig. 1 implicitly assumes operation in
“free space” where particles are free to roam where they will.
Depending upon the nature of stochastic particle motion, there
may be nonzero probability that any given particle will never
arrive at the detector (null recurrence [14]). Second, given
what we know about detection in biological systems, particles
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Fig. 2. Molecular communication system identical to Fig. 1 except that
particles piercing the receiver boundary are perfectly detected and thence
removed from the system (gray circles).

(called “ligands” in the biological literature) can bind and
unbind at the “receptor”, a typically more complex molecule
that binds preferentially to the ligand. Thus, a single particle
may be detected multiple times at the receiver so that multiple
~Sj may correspond to a single Tm. Furthermore, a bound
particle may block detection of otherwise detectable particles
at the receiver, further complicating the system.

Once again, it is tempting to dive into the details of binding
kinetics and concomitant detection issues, but for now we
concentrate on repeated particle detection and blocking. It is
reasonable to assume that the action of the transport medium
on particles is independent of the number (to within reason),
position and release times of particles. It can then be easily
shown that subsequent detection times of the same particle
convey no additional information because later re-detection
times are independent of emission time given the first detection
time [5]. Likewise, if a particle is blocked from detection
at the receiver, we cannot gain information. Therefore we
can imagine a model where all the detection times ~sj are
first detections, we ignore subsequent detections, effectively
removing that particle from the system, and we assume that the
first arrival of any particle near the receiver will be detected.

We now have the simplified model of Fig. 2 which pro-
vides an upper bound on molecular channel capacity with-
out requiring us to restrict our attention to specific particle
transport or detector uptake/collision models. Emitted parti-
cles pierce an imaginary detector boundary and their arrival
times are recorded. They are thereafter removed from further
consideration. Certainly were detected particles not removed,
subsequent re-detections could not be differentiated from first
detections and a loss of capacity would result. Likewise,
receptor blocking would lead to capacity loss. Thus, this
simplified model of Fig. 2 provides an upper bound for all
systems where the transport characteristics are independent of
particle release times, {Tm}.

Of course, the simplification of Fig. 2 does not solve
the problem of “missing” detections owing to non-arrival of
a particle at the receiver. We could imagine requiring that
particles arrive in finite time, but that imposes a condition
on the transport model statistics. We could instead simply
imagine that emissions are erased in an independent identically
distributed (i.i.d) way under the assumption that particles travel
to the receiver independently. A significant variation on this
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Fig. 3. Molecular communication system identical to Fig. 2 except that
particles can be neutralized/degraded (open circles) before they reach the
receiver.

theme is to assume particles have finite (and likely stochastic)
lifetimes either through degradation in the medium or active
and deliberate chemical gettering (removal/incapacitation of
signaling particles) in the channel design [15]. This type of
model augmentation is depicted in Fig. 3 where some parti-
cles (unfilled) have been rendered undetectable/extinct either
through aging or gettering. We will later see that such particle
deactivation can improve channel performance by reducing
timing ambiguity at the expense of increased emission energy.

The issue of null recurrence (non-arrival) of particles can
also be treated by an appeal to the physics of many practical
molecular communication scenarios – compartmentalization.
That is, free-space diffusion without drift is null-recurrent
with particles potentially never appearing at the receiver.
However, many systems have physical boundaries that force
the probability of a particle non-arrival to zero. One can
even combine boundaries and particle extinction. These two
scenarios are depicted in Fig. 4.

Finally, as the natural culmination of point-to-point particle
systems, one might consider a multiplicity of different particles
wherein information is conveyed not only through timing
but through the implicit information payload associated with
particle identity. Such a system is depicted in Fig. 5. The same
issues as associated with timing channels pertain, but there is
also the issue of stitching together a message from particles
that could arrive in arbitrary order [6], [16].

B. Concentration-Based Systems

Collectively, Fig. 1 through Fig.5 cover the full range
of finest grain molecular communication models. However,
since practical systems may operate through release of large
numbers of molecules, one can also imagine a system wherein
some time-varying amount of chemical is emitted, Ce(t) and
the receiver detects a time-varying concentration Cr(t) as
opposed to individual particle arrivals. A concentration-based
system cannot have higher capacity than the fine grained
systems depicted in Fig. 1 through Fig.5 since time-varying
concentrations are a deterministic function of the detailed
particle release and capture timing. That is

Cr(t) =
1

V

∣∣∣{~Si ∈ [t, t+ ∆]}
∣∣∣ (3)
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Fig. 4. Molecular communication system identical to Fig. 2 (a) and Fig. 3
(b) except compartmentalization results in finite-time detection of particles at
the receiver.
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Fig. 5. Compartmentalized molecular communication system with different
particles

where V is the volume sampled by the sensor, ∆ is the
integration interval and | · | indicates the cardinality of the
enclosed set. In the limit of vanishing ∆ it is obvious that

V Cr(t) = lim
∆→0

∣∣∣{~Si ∈ [t, t+ ∆]}
∣∣∣ (4)

is a point process that indicates the receiver arrivals {~Si}.
A good deal of work in molecular communication considers

such models owing to mathematically tractable descriptions
of the transport medium [17] (i.e., various types of diffusion)
and to date all experimental systems are concentration-based.
Nonetheless these models must obey the same fundamental
limits as precise timing models. Thus, all the results presented
for particle systems must carry over after adjustment for the
much higher particle intensity associated with concentration-
based systems.
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Fig. 6. General Molecular Communication Channel Abstraction: a message
A is coded and then transduced into a set of particle emission times T. These
particles propagate over a spatial gap R through a transmission medium and
are captured (exactly once) at corresponding times S. Since the particles are
identical, capture results in the ordered arrivals ~S. These ordered arrivals are
sensed and decoded into the message estimate Â.
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Fig. 7. A More Detailed Look at Fig. 6. A sender transmits an ensemble of
particles (“inscribed matter”) to a receiver across a spatial gap (of length R in
the figure). The particles are released at (unordered) times {Tm}, propagate
through a transmission medium and are captured at corresponding times
{Sm}. For identical particles, the receiver sees ordered arrivals {~Sm} which
may differ in index from the unordered arrivals {Sm}. Particles themselves
may or may not carry information payloads.

C. A High Level Abstraction

Overall, the models of Fig. 1 through Fig.5 can be abstracted
as depicted in Fig. 6 This basic arrangement is a staple of
the field and can be found in various forms in a variety of
prior work (see [8] for a survey). A message is composed,
coded into chemical emission patterns and released into a
medium that transports the chemicals to a sensor whose output
is interpreted to reconstruct the message. There are many
variations on the transport, transduction and sensing methods,
but this basic model is generally accepted. What we consider
here will concern only the central portion of the diagram
as shown in Fig. 7. The information carriage from T to ~S
which although modeled as particle release naturally includes
concentration models in the limit of Avogradrian numbers of
particles.

III. MATHEMATICAL DETAILS

Using Fig. 2 through Fig.6 as our guides, we can now
consider the mathematical modeling details. In the interests
of clarity we try not to provide derivations since most of the
details of what we present here are available elsewhere. Rather,

we simply seek to limn the analytic motifs that recur in the
study of molecular communication channels.

A. Identical-Particle Timing Channels

Consider Fig. 2 where identical particles are emitted and
then captured (and removed) after transit to the receiver – and
we admit the possibility that a particle may arrive only at time
∞. All such models are defined by three random variables:
emission time Tm, transit (first-passage) time Dm and arrival
time Sm, and related by

Sm = Tm +Dm

Since each arrival corresponds to a single emission, we can
define M -vectors T, D and S accordingly:

S = T + D (5)

However, since the particles are identical, the receiver sees
only an ordered set of arrivals

~S = PΩ(S) (6)

where PΩ(·), Ω = 1, 2, · · · ,M !, is a permutation operator and
Ω is the permutation index that produces ordered ~S from the
argument S. Thus,

~S = PΩ (T + D) (7)

and Ω is a discrete random variable associated with the chan-
nel. Equation (7) is the basic description of a “timing channel”
wherein emissions T are constructed so that information can
be extracted from ~S. The essence of this channel is abstracted
in Fig. 7.

In addition to being finest grain, this abstraction is particu-
larly useful because it distills any number of emitter/receiver
geometries and transport medium properties to a single random
variable – the first-passage time D. There are many models
for the transport mechanism and resultant first-passage time
distributions, the most popular of which is the Levy dis-
tribution derived from diffusion characteristics [15] and the
related additive inverse Gaussian channel model [18]. A more
complete list of timing channel models can be found in [8]
and references therein. In this paper we will not delve into the
various possible models, but rather, we establish a (hopefully
transparent) framework under which all such channels can be
evaluated.

That said, “timing channel” is a bit of a misnomer since a
sort of amplitude modulation is certainly possible with simul-
taneous (or temporally intense) release of multiple particles.
Thus, with the understanding that timing channels encompass
all other identical particle channel models, we will not mention
amplitude modulation again until we consider ephemeral par-
ticle models as depicted in Fig. 3 where amplitude modulation
is a more natural description.

It is also worthwhile noting that “timing channels” appear in
a variety of contexts, most notably in the award-winning paper
“Bits Through Queues” [19] and follow-on work [20], [21].
The difference between the bits through queues model and
the particle timing channel is the lack of a queue – or perhaps
better said, an infinity of servers [6]. That is, we explicitly
assume particle detections at the receiver do not interfere with



one another. Bits through queues channels implicitly assume
particle-particle competition for service (detection).

Photonic channels with precisely timed arrival detection at
the receiver are also a sort of timing (and concentration, via
intensity detection) channel. Under an assumption of stochastic
(but perfect) detection, release-time uncertainty at the trans-
mitter and/or a scattering medium, the particle (photon) transit
time between transmitter and receiver would be stochastic and
the model of equation (7) would pertain. However, unavoidable
thermal noise at photonic receivers results in missed (or
worse yet, spurious) detections at the receiver. The missed
detections could possibly be modeled as erasures, but there is
no analog for spurious detection unless the detection process
is considered – which in search of outer bounds we do not do
here.

Finally, since the word “timing” has through repeated use
here become a sort of bludgeon, it is perhaps important
to note that like [22] and many others, we assume perfect
synchronization between transmitter and receiver. However,
we also note that so long as the “clocks” can be synchronized
at the M -particle channel use level where M can be arbitrarily
large, some types of random clock skew can probably be
incorporated into the first-passage time distribution descrip-
tion. Otherwise, a synchronization overhead penalty of at least
the clock skew entropy rate would be imposed. More precise
treatments of the general problem can be found in [23]–[25].

Persistent Particles: Suppose particles persist until they are
captured at the receiver – however long that takes. The
maximum mutual information between the emission ensemble
T the input and arrival ensemble ~S is the natural definition of
channel capacity. However, we would then require a signaling
model that supports the usual asymptotically large block length
and repeated independent sequential channel uses paradigm
[10, (chapt 8 & 10)]. In addition, we must also pay attention
to energy usage since lack of energy constraints can lead to
unrealistic results. We therefore define a channel use as the
launch and capture of M particles under an emission deadline
constraint, τ , with the further constraint that

λτ = M (8)

where λ, the particle launch average intensity, has units of
particles per time. Equation (8) is implicitly a constraint on
average power assuming a fixed per-particle energy cost for
construction/sequestration/release/delivery. We also note that
the signaling interval τ is now an explicit function of M as
in

τ = τ(M) =
M

λ

So, consider Fig. 8 where sequential M -particle transmis-
sions – channel uses or symbol intervals – are depicted. We
will assume a “guard interval” of some duration γ(M, ε)
between successive transmissions so that all M particles
are received before the beginning of the next channel use
with probability (1 − ε) for arbitrarily small ε > 0. This
condition guarantees the (asymptotically) independent chan-
nel uses necessary for a patent information-theoretic channel

...
21 k

τ( Μ )

γ( Μ,ε )

Fig. 8. Successive M -emission channel uses. For a given use of the particle
timing channel, the sender emits M particles over the transmission interval
τ(M) = M

λ
. γ(M, ε) is the waiting period (guard interval) before the next

channel use.

description. We further require that the average emission rate,
M/(τ(M) + γ(M, ε)) satisfies

lim
ε→0

lim
M→∞

M

τ(M) + γ(M, ε)
= λ (9)

We then require that the last particle arrival time ~SM occurs
before the start of the next channel use with probability 1.

It has been shown [6] that if the expected value of the first-
passage time D is finite, then the assumption of asymptotically
independent channel uses holds. However, it has also been
shown that if E[D] is infinite, then it is impossible to provide
such a signaling model and the usual channel capacity analysis
is ill-posed. Interestingly, popular transport models such as
simple drift-free diffusion have infinite first-passage times, so
the capacity question is moot for such systems in the context
of Fig. 1 and Fig. 2. However, in any practical system there are
boundaries or compartments over which particles may roam
as depicted in Fig. 4a which results in E[D] <∞ and renders
the system tractable from an information theoretic standpoint.

Assuming E[D] <∞ we can now consider the mutual in-
formation I[~S;T] as a measure of channel capacity. However,
the ordering operation that produces ~S renders this difficult
in cases where T may be arbitrarily distributed. However, for
nonsingular first-passage time distributions on D, S will be
continuous. It can then be shown that the differential entropy
of ~S is

h(~S) = h(S)− logM !

We then note the equivalence

{Ω, ~S} ⇔ S

which allows us to write

h(S|T) = h(Ω, ~S|T) = h(~S|T) +H(Ω|~S,T) (10)

where, since Ω is a discrete random variable, H(Ω|~S,T) is
the discrete entropy of Ω given ~S and T. Equation (10) and
leads immediately to

I(~S;T) = I(S;T)−
(

logM !−H(Ω|~S,T)
)

(11)

Equation (11) is satisfying in that I(~S;T) is expressible as
the mutual information when emission-arrival correspondence
is known (I(S;T)), less a penalty imposed by particle indis-
tinguishability,

(
logM !−H(Ω|~S,T)

)
. That is, H(Ω|~S,T)

is the average amount of disorder between S and T imposed
by the channel. Evaluating H(Ω|~S,T) and then maximizing
equation (11) requires some effort [6], [7]. Nonetheless, there
are some useful and general results which we now state.
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Fig. 9. Lower bound (dashed line: equation (14) and upper bound (solid
line: equation (15)) for the persistent particle timing channel capacity Ct (in
nats per passage time 1/µ) as a function of channel load ρ, the ratio of the
particle emission rate λ to the particle uptake rate µ. Exponential first-passage
assumed.

First, if we set the signaling/symbol interval to τ = M/λ
where λ is the average rate at which particles are emitted (see
equation (9)) then we can define a capacity per particle as

Cq = lim
M→∞

1

M
sup I(~S;T) (12)

Furthermore, if we set our time base to units of mean first-
passage time E[D], the capacity in bits per passage time is

Ct = λCq (13)

It was shown in [19] that exponential first-passage mini-
mizes the mutual information between T and S under a mean
constraint on both D and T . So while the distribution on
D that minimizes the mutual information between ~S and T
remains unknown at this time [7], exponential D is still a
useful reference point. So, assume D is exponential with mean
1/µ and define particle emission intensity as ρ = λ/µ. In units
of nats per mean first-passage time the channel capacity is at
least

Ct(ρ) = ρCq(ρ) ≥ ρ
(

log
1

ρ
+

1

ρ
E[` log `]

)
(14)

where ` is a Poisson random variable with mean ρ. Equation
(14) initially increases with ρ, reaches a maximum (which
must be calculated numerically) and then settles to an asymp-
totic value of 0.5 nats. Likewise we have an upper bound, also
in nats per mean first-passage time,

Ct = ρCq(ρ) ≤ ρ log

(
1

ρ
+ 4

)
(15)

The bounds given in equation (14) and equation (15) on Ct
(taken from [6], [7]) are plotted in Fig. 9.

The lower and upper bound agree well for smaller values
of ρ but diverge for ρ� 0.25. That said, an input distribution
on T that does better than the lower bound has yet to be

found. So, we suspect the lower bound lies close to (or is
coincident with) the true upper bound. If this is true, then the
lower bound is even more interesting in that it suggests particle
emission much in excess of the mean first-passage time may
reduce capacity. It is important to note that first-passage time
uncertainty (jitter, or entropy) produces disordered particles.
That is, the mean first-passage time is only a measure of
channel latency – the “propagation delay” so to speak – and
does not itself impact particle order uncertainty. However, for
exponential first-passage, the uncertainty is an explicit function
of the mean first-passage time 1/µ so here we use mean first-
passage time and timing jitter/entropy interchangeably.

Perhaps most important of all, if we assume equation (14)
lies close to the capacity upper bound, then rates on the order
of 0.5 nats per passage time are the best we can do with
identical particle channels with exponential passage. Since
timing channels are finest grain, all other coarser models must
be similarly capacity-constrained. It is therefore noteworthy
that in [17] (figures 4 and 5) rates on the order of 3 kb/s
were derived for emitter-receiver separations in the range of
50−500µm in a diffusive medium. This discrepancy is worth
exploring in a little more detail.

The mean first-passage time in a constrained 1-D system
where the particle starts at x = 0 and is absorbed at x = ±R is
R2

2D where D is the diffusion coefficient. The standard deviation
(jitter) of the first-passage time is on the order of its mean,
and it is this jitter that determines the arrival uncertainty. The
diffusion coefficient of water (10−9m2/s) was used in [17]
with emitter-source separations ranging from 50µm to 500µm
which would imply mean first-passage times in the range
E[D] ∈ (1.25, 125)s with comparable standard deviations.
Thus, the kilobit range capacities reported in [17] exceed
the capacities predicted by equation (14) by many orders
of magnitude. This disparity could be a result of the way
capacity was defined in [17] without stipulation of a signaling
interval that allows the independent (ISI-free) channel uses
necessary for application of the channel coding theorem [10].
It could also be a result of the specific first-passage time
distribution – it is well-known that exponential first-passage
produces min-max I(S;T ) [19] while non-exponential first-
passage may allow linear growth in capacity [26]. Regardless,
if the achievable upper bound truly diverges from the lower
bound as in Fig. 9, then perhaps such high (or even higher)
rates are accessible through the increasingly intense particle
emissions implicit in [17].

Ephemeral Particles: A fundamental difficulty with identi-
cal particle channels is particle persistence which leads to
intersymbol interference (ISI). We thus took care to define
signaling intervals that displayed zero ISI in the limit so that
standard information-theoretic techniques could be applied to
derive capacity. However, what if we could guarantee that
particles that did not arrive at the receiver by a certain time
would disappear from the system thereby limiting the temporal
extent of ISI?

A number of previous studies have, in various ways, im-
posed exactly this sort of condition either by limiting the
emission period and extending the detection period so that
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Fig. 10. Depiction of the particle-intensity channel [15]). xi particles are
emitted at the start of each symbol interval and yi particles detected. If the
transit time of a particle exceeds τ , that particle is “retired” and cannot be
detected so that the possibility of intersymbol interference is precluded.

only particles emitted in interval k would arrive during interval
k, or by assuming particle lifetimes through design or explicit
injection of gettering agents [27]–[29]. Extending the detection
period is simply a coding restriction on the persistent particle
timing channel and therefore must have lower capacity. The
same is true of erasures. Imposing strict lifetime deadlines,
however, provides a type of implicit side-information to the
receiver that can greatly increase capacity.

Following [15], suppose we design an emission strategy
where we periodically release different numbers of particles
in a burst at the beginning of each signaling interval and
then record how many arrive during the associated detection
interval. The basic idea is illustrated in Fig. 10 where three
particle bursts (emissions) and their associated detections are
depicted. Particles that arrive within τ of their release time
are detected (black) while those whose transit time exceeds τ
are rendered undetectable (gray). [15] also considers the pos-
sibility of release imperfection (attempting to emit m particles
but emitting m′ instead) and detection imperfection (mistaking
the number of valid arrivals). However, we will ignore these
complications since they can only serve to decrease capacity
and as with the timing channel, we seek outer bounds.

This channel discipline lends itself to a particularly simple
description of Fig. 11 where as many as X = M particles
could be released, each having a probability p of reaching the
receiver within travel time τ , but only Y ≤ X are detected.
Furthermore and perhaps most important, the survival prob-
ability is a monotonically increasing function of τ since it
is the cumulative distribution function (CDF) of the particle
transit time distribution. If τ is small, then the channel can
be used rapidly, but fewer of the particles are likely to arrive
on time which decreases the per-channel-use capacity (which,
incidentally, is the reason that all particles are released at the
start of an interval, maximizing the number of particles that
arrive in time). If τ is large, then the number of input particles
is more easily distinguishable which increases per-channel-use
capacity, but the channel is used less frequently.

We can compute the ephemeral particle channel capacity by
calculating the capacity of the channel in Fig. 11 and dividing
by τ since all channel uses are, by design, independent.
However, since no closed form exists we can consider a related
suboptimal Z-channel wherein either 0 or M particles are
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Fig. 11. Particle intensity channel diagram with survival probably p. p is a
monotonically decreasing function of the symbol interval τ .

released and the arrival of any particles constitutes a “1” while
no arrivals are interpreted as “0” [15]. The Z-channel crossover
probability is therefore (1−p)M and the capacity per channel
use is

CZ(p) = log

(
1 + (1− (1− p)M )(1− p)M

(1−p)M

1−(1−p)M

)
So that we can relate the result to channels with persis-

tent particles, let us assume exponential first-passage of the
particles between emitter and receiver with mean 1/µ so that

p(τ) = 1− e−µτ

The mean particle intensity is

λ =
M(1− α)

τ
(16)

where α is the capacity-optimizing probability of sending no
particles. If we define

a = (1− p(τ))M

the probability of “crossover”, then α can be written as

α = 1−
(

1

1− a

)
1(

1 + 1
1−a

1

a
a

1−a

) (17)

The capacity of the system is

CE(τ) =
1

τ
log(1 + (1− a)a

a
1−a ) (18)

Now, deviating from the course taken in [15], suppose µτ is
small enough that the probability of a particle reaching the
emitter is small

p(τ) ≈ µτ � 1

M
(19)

We then have

a = e−Mµτ ≈ 1−Mµτ



and
1− a ≈Mµτ

so that

CE(τ) ≈ 1
τ log

(
1 +Mµτ(1−Mµτ)

1−Mµτ
Mµτ

)
≈ 1

τ log
(

1 +Mµτ(1−Mµτ)
1

Mµτ

)
which in the limit of small τ becomes

CE(τ) ≈ µM

e
(20)

Equation (20) implies that capacity increases linearly with
M for very short symbol intervals so long as p(τ) approaches
zero linearly or sublinearly in small τ . p(τ) is indeed linear in
small τ for both exponential passage and Brownian motion,
with and without drift. Therefore, in contrast to persistent
particle timing channels where increasing particle intensity
might not increase capacity, engineering finite particle lifetime
can confer impressive capacity increases limited only by the
number of particles available for injection during symbol
intervals and the rate at which p(τ) approaches zero in τ .

B. Non-Identical Particle Channels

So far, we have only considered timing (including emission
intensity) as the information carrier. However, it is possible
that the particle also carries information, much as a “packet”
carries information over the Internet, essentially by virtue of
its identity as depicted in Fig. 5. So, imagine we have Q
identifiable particles from which to choose and we can emit
these particles into the medium at arbitrary times. How much
information can be conveyed?

Persistent Particles: If the particles are persistent, one might
consider avoiding timing altogether and assemble messages
as combinations of particles. With particle intensity λ and
observation interval τ we will have on average M = λτ
particles. The number of possible distinguishable combinations
of M particles choosing from a library of size Q is

(
M+Q−1
Q−1

)
and if we allow between zero and M particles on (0, τ) there
are

N =
M + 1

Q

(
M +Q

Q− 1

)
distinct combinations. The data rate is then

R =
1

τ
log

(
M + 1

Q

(
M +Q

Q− 1

))
where we assume M ∝ τ . It is easy to see that R → 0 as
τ → ∞ which suggests that smaller intervals must be used
sequentially which again raises the specter of ISI.

So rather than worry about re-engineering guard intervals
between symbols to combat ISI, suppose that we can use
timing information and the channel discipline previously de-
veloped for it. Further, assume each particle can carry log2Q
bits of information and that we wish to string particles together
into a message. To recover the original message at the receiver,
each particle must be uniquely identifiable otherwise message
reconstruction is impossible. The simplest approach is to add
a sequence number [6], [16]. Given M particles per channel

use, we could obviously append logM bits to each particle
and likely this would be sufficiently efficient. Alternatively,
we might also consider gross structural differences in the
particles – sending particles of distinct lengths 1, 2, · · · ,K
where M = K(K + 1)/2, for instance or some other clever
structural embedding. Nonetheless, it seems worth noting that
H(Ω|~S,T) provides exactly the measure of essential particle
“overhead” or “side-information” (of any form) necessary to
maintain proper sequence.

Consider that operation of the timing channel in-
volves construction of deterministic blocklength-N codewords
{t1, · · · , tN} where each tn represents the emission schedule
for M particles (a channel use). If capacity is not exceeded,
the receiver can reliably recover the information embedded
in the codewords and since we generally assume the receiver
has access to the coding method, a correctly decoded message
implies knowledge of the constituent codewords {t1, · · · , tN}.
However, the channel imposes residual uncertainty about the
mapping S→ ~S – the ambiguity about which ~Si is associated
with which Sj . For this reason, the payload-inscribed particles
cannot yet be correctly strung together to recover the message.

However, given the observed arrivals ~S and the correctly
decoded t, H(Ω|~S, t) is the definition of the uncertainty
about that ordering, Ω. Likewise, the average uncertainty is
H(Ω|~S,T). Thus, the source coding theorem implies that at
least H(Ω|~S,T) bits must be used, on average, to resolve the
mapping ambiguity.

It is important to note that we have not actually provided
a method for message reconstruction, only a lower bound on
the amount of “side information” necessary at the receiver to
assure proper reconstruction. However, as a practical matter,
the quantity 1

MH(Ω|~S,T) does provide some guidance. In the
worst case where the order of particle arrival is completely
random, H(Ω|~S,T) = logM ! which amounts to each packet
carrying a header of size 1

M logM ! ≈ logM for large M – es-
sentially numbering the packets from 1 to M . If 1

MH(Ω|~S,T)
is much smaller, then cyclic packet numbers could be useful
since smaller 1

MH(Ω|~S,T) implies that packets are unlikely
to arrive grossly out of order. The sequence header could
then be commensurately smaller. In either case, the total
amount information necessary to resolve the ordering Ω is
1
MH(Ω|~S,T) per packet on average.

Ephemeral Particles: To our knowledge there has been no
work on sequencing for payload-bearing particles with finite
lifetimes, and given the improvements finite lifetime affords
timing channels, sequencing for ephemeral particles might be
an interesting line of investigation. For instance, one could
imagine fountain-like codes [30] given the fact that increased
particle intensity leads to higher probability of capture within
a given symbol interval. However, the same sequencing issues
and associated overhead would apply, and under the simulta-
neous release discipline, timing information could not be used
to reduce the necessary sequencing information that must be
carried by each particle. However, since the symbol interval is
crisply defined by particle lifetime and only finite information
can be sent during this fixed interval, the use of explicit



sequence numbers would be a good low overhead solution.

IV. ENERGY CONSIDERATIONS

Just as for more typical communication channels, capacity
evaluation without consideration of energy can lead to erro-
neous conclusions. So we posit simple but reasonable energy
requirements for molecular communication – although unlike
[31] we assume that actual transport is “for free” through
any number of stochastic collision processes. Suppose the
construction cost for a particle without a payload is c0 Joules
and with a payload c1 Joules. Symbolic string particles incur
a “per character” cost which we define as ∆c1 per character
per particle. For example, adding a nucleotide to double-
stranded DNA requires 2 ATP (1.6 × 10−19 J) while adding
an amino acid to a protein requires 4 ATP (3.2 × 10−19 J)
[32]. There may also be other energy involved in sequestration,
release and/or particle transport across a gap. However, the
key assumption is constant energy expenditure per particle.
Without considering the details as in [33] we will denote the
combination of these and any other relevant energies as ce
Joules per particle. Thus, the power required for the timing-
only channel in Joules per first-passage time is

PT = ρ(c0 + ce) (21)

which we rewrite as

ρ =
PT

c0 + ce
(22)

The ephemeral-particle channel average energy is also

PE = ρ(c0 + ce) (23)

so that

ρ =
PE

c0 + ce
(24)

except that ρ is defined using λ as in equation (16). For the
timing-plus-payload channel we have

PT+P = ρ

(
c1 + ce +

(
H(Ω|T, ~S)

log b
+K

)
∆c1

)
(25)

where K is the string length of information-laden particles,
and b is the alphabet size used to construct the strings so that
each particle carries a payload of Q = K log b bits. H(Ω|T, ~S)
is the emission order uncertainty induced by independent
particle passage through the channel. We then have

ρ =
PT+P(

c1 + ce +
(
H(Ω|T,~S)

log b +K
)

∆c1

) (26)

The capacity of the timing-only channel in bits per mean
first-passage time is

CT = ρCq(ρ) (27)

Similarly, the capacity of the particle-timing+payload channel
is

CT+P = ρ (Cq(ρ) +K log b) (28)
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Fig. 12. Lower bounds for the capacities of the particle timing (CT ), and
particle timing plus particle payload (CP+T ) channels as a function of power
budget (PT and PP+T ) for DNA string particles with exponential first-
passage times. Capacity is in units of bits per first-passage time 1/µ. Power
is in units of 2-ATP (1.6 × 10−19 J) per first-passage time 1/µ and a
nucleotide residue is assumed to carry 2-bits of information. Solid lines:
aggregate capacity of n = 1, 2, 4 separate (independent or parallel) particle
timing channels where DNA string particles carry no information payload.
Notice the maxima at powers ≈ 3, 5 and 10 respectively, consonant with
equation (14) and Fig. 9. Dashed/Dotted lines: aggregate capacity of particle
timing plus particle payload channels for DNA string particles of different
lengths, K = 1, 2, 4-residue payloads. Exponential first-passage assumed.

and the capacity for the ephemeral particle channel for very
small symbol intervals is then, via equation (20) and equation
(16)

CE ≈
M

e
=
µτ

e

ρ

(1− α)
≈ PE

10(c0 + ce)M
(29)

if we set µτ = 1
10M , bettering the assumption of equation

(19).
In Fig. 12 and Fig. 13 we plot CT , CP+T and CE in bits

per first-passage time (1/µ) as a function of power budget
P in assuming DNA-based particles. For particle timing plus
payload signaling we show plots for K = 1, 2, 4 DNA-
residue particles. For timing-only signaling we also include
plots where different identifiable particles (different molecule
types or physically separate channels) are used (i.e., n = 1, 2, 4
parallel timing channels as shown) for comparison with pay-
load channels. We have assumed costs c0 = ∆c1 = 2 ATP –
which is why the power unit is 2 ATP per first-passage time.
Furthermore, we assume c1 = ce = ∆c1 since it seems likely
that the absolute minimum energy for particle release, ce, in
a purely diffusive channel is probably comparable to the cost
of creating (or breaking) the covalent bond used to append a
nucleotide residue. If we assume 1/µ = 1ms, then the ordinate
of Fig. 12 and Fig. 13 are in kbit/s and the abscissa is in units
of 1.6 × 10−16W. If 1/µ = 1µs, (as might be the case for
smaller gaps in a nano-system) the ordinate is in Mbit/s and
the abscissa is in units of 1.6× 10−13W.

These data rates are many many orders of magnitude larger
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Fig. 13. Capacity of the ephemeral particle (CE ) channel as a function of
power budget (PE ) for DNA string particles with exponential first-passage
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assumed. Plots for M = 1, 10, 100 shown.

than the fractional bit/second data rates previously reported
for simple demonstrations of molecule communication [12] or
even the 10’s of bits per second rates reported in [13]. And
the predicted power efficiencies are startling. Comparison of
our results to [12], [13] and others would be relatively straight-
forward if first-passage time jitter/entropy for the experimental
setup were provided, although in both [12] and [13] very large
numbers of molecules were released with each alcohol “puff”
so precise timing at the molecular level was not attempted.

V. DISCUSSION & CONCLUSION

We have reviewed a general and finest grain (micro) fun-
damental mathematical framework for molecular communica-
tion channels. We have emphasized that the bounds derived
for such micro systems must be obeyed by any molecular
communication system including those that use Avogadrian
(macro) numbers of signaling particles. Along the way we
have presented bounds and made comparisons between differ-
ent systems. We now conclude with a slightly deeper dive into
these comparisons as well, some gentle suggestions for future
work.

Capacity Bounds and Coding Methods: The upper bound
on capacity Ct, the timing capacity for persistent identical
particles, is tight for low particle load ρ but diverges for
large ρ. However, no empirical distributions that provide rates
higher than the lower bound have yet been found [6], [7]. So,
does the capacity of the timing-only channel truly flatten with
increasing ρ as in Fig. 12 and Fig.9, or is there a benefit to
increasing the intensity of timing particle release as suggested
in [17]? Intriguingly, this rate flattening of the lower bound
seems to comport almost exactly with a result in [21, section
III] which considers a related system where only a finite
number of particles can be simultaneously in flight (a finite
“server” system in the parlance of [19], [21]). More careful

exploration of these parallels may reveal launch densities that
cause Ct to grow without bound with ρ even with persistent
particles.

Since exponential first-passage is not the worst case corrup-
tion for such systems [7], we cannot be assured of minmax
and maxmin performance bounds and so can only use what
we have seen so far as a guide. Questions such as “what is
the minmax capacity of the molecular timing channel?” and
“How much better than exponential might other first-passage
densities imposed by various physical channels be?” remain
open.

However, we did unequivocally see that systems that use
particles with finite lifetimes can have much higher data rates
albeit at the expense of increased energy. This simple idea
suggests one could even imagine channels with chemically
reactive species in which emitted particles elicited spatially
structured propagation of detectable reaction products [34]–
[36]. But perhaps even more interesting, certain biological
systems (neuromuscular synapes) that arguably require high
and reliable data rates seem to employ finite particle lifetimes
through gettering (secretion of cholinesterase to getter acetyl-
choline). One wonders what other biological phenomena can
be identified (or predicted) based on the analytically derived
characteristics of particle channels.

Precise Timing, Fuzzy Timing and Concentration: It is
important to quantify the relationship between our fine grain
timing model and other less temporally precise ones [4], [5],
[12], [17], [37]–[43]. The timing model described here seems
to imply infinitely precise control over the release times T and
infinitely precise measurement of the arrival times ~S. However,
imprecision in both times can be incorporated easily into the
transit time vector D. Thus, applying a precise timing model
to the “fuzzier” release and detection times associated with
practical/real systems is straightforward. That is, first-passage
time jitter already imposes limits on timing precision. So long
as timing precision is significantly better than first-passage
time jitter, the bounds provided here (and developed in [6],
[7]) will be moderately tight. In addition, we are hopeful that
the upper bound of equation (15) shown in Fig. 9 will be
useful for evaluating molecular timing channel capacity for
arbitrary first-passage time distributions since it requires only
knowledge of the timing channel capacity coupled to average
properties of the corresponding input distribution.

As previously discussed and precisely stated in equation (3)
and equation (4), concentration is derived from counting ar-
rivals within temporal windows. The data processing theorem
[10] indicates that our precise timing model must undergird
all concentration based methods which, even with perfect con-
centration detection, cannot possibly exceed the capacity of the
fine grain timing model presented here. Given the asymptotic
nature of analysis, an individual emission schedule t for large
M is exactly a temporal emission concentration profile as time
resolution coarsens. Thus, micro results provide crisp upper
bounds on the capacities derived from concentration-based
models. Likewise, concentration-based results inform micro
level particle systems. For instance, do the startlingly large
kb/s results of [17] suggest that equation (15) is an achievable



upper bound? Or does the failure to find input distributions
that approach this bound suggest some discrepancy between
the assumptions behind analysis in [17] versus those behind
the lower bound of equation (14)? We suspect the answer
lies in the particular first-passage density and that exponential
first-passage may preclude growth of capacity with increasing
particle intensity.

Identifiable Particles Without Payload: We considered the
possibility of uniquely identifying each of M emitted particles
with a sequence number of length logM bits. We treat this
scenario as distinct from ensemble timing channel coding
which resolves residual ordering ambiguity because if the
particles are individually identifiable, the potential emission
schedules are not constrained to ensemble timing channel cod-
ing. Thus, the M identifiable particles constitute M parallel
single-particle timing channels, which for exponential first-
passage have aggregate capacity M log(1 + M

ρe ) [7].
However, because each particle requires logM bits of

sequencing information, ρ is limited by the power budget P
(in units of energy per first-passage, 1/µ)

ρlogM ≤ P (30)

Following Fig. 8 we have λτ(M) = M so the capacity in nats
per first-passage time is

C = ρ log

(
1 +

M

ρe

)
≤ ρ log

(
1 +

e
P
ρ

ρe

)
(31)

with the inequality owed to equation (30). However, in the
limit of M →∞ we have ρ→ 0 so we have

lim
ρ→0

C = P (32)

in units of nats per first-passage time (and assuming unit per-
bit cost of the particle identfier string). Thus, the identifiable
particle timing channel capacity exceeds the identical particle
timing channel lower bound with increasing power budget and,
more importantly, scales linearly in power.

Particle Corruption and Receptor Noise: The potential for
lost or corrupted particles and potential binding noise at recep-
tor sites must eventually be considered. However, as previously
stated, particle erasure (particles that do not arrive) or payload
particle corruption (particles that are altered in passage) or
receptor noise (particles bind stochastically to the receptor)
cannot increase capacity (data processing theorem). Thus, the
results here provide upper bounds. Nonetheless it is worth
considering how the analytic machinery developed previously
might be modified to accommodate such impediments.

First, consider alteration of payload-carrying particles en
route. If the corruption is i.i.d. for each particle, then error
correcting codes can be applied individually, or to the particle
ensemble. The resulting overall channel capacity will be de-
graded by the coding overhead necessary to preserve payload
message integrity (including the sequencing information).

Then consider particle erasure where a particle never arrives
(and is assumed to not arrive in a later signaling interval).

Since each signaling interval uses M particles, we will know
whether particles get “lost” in transit and can arbitrarily assign
a faux arrival time to such particles. However, the problem
this poses for the analysis is two-fold. First, particles released
later in the signaling interval are more likely to be lost which
implies that the first-passage density is not identical for each
particle. Second, the first-passage density for each particle
would then contain a singularity equal to the probability of
loss, which violates a key assumption (hypersymmetry [6])
that drives the analysis. That said, an erasure channel approach
where arriving particles were deleted randomly could be
pursued, providing a worst case scenario since the information
associated with erasures being more likely for later emissions
would be absent. However, the capacity for such systems
would necessarily be lower – erasure does not confer the
advantage of deliberately ephemeral particles.

Interference and Multiple Users: Multi-user communication
in a molecular setting is a critical question, and a better
understanding of the single-user channel will certainly help
with multi-user studies where transmissions interfere. There
is some prior work that may provide an information-theoretic
foundation [44] similar to how the work described here builds
on [19], but the multi-user molecular signaling problem has
not yet been rigorously considered. Of particular interest
would be a version of MIMO since Fig. 12 shows capacity
benefits from parallel channels. One could imagine apposed
arrays of emitters and receivers which could be engineered
to collaborate to encode and decode information in a variety
of ways owing to the differing particle transport channel
properties between spatially distinct emitter/receiver pairs.
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[20] R. Sundaresan and S. Verdú. Robust Decoding for Timing Channels.
IEEE Transactions on Information Theory, 46(2), 2000.
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