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Abstract—As system sizes shrink to the nanoscale, the usual
macroscopic methods of communication using electromagnetic
and acoustic waves become increasingly difficult owing to, es-
sentially, a mismatch between realizable antenna sizes and the
propagation characteristics of the medium. Thus, at the scale
of microns and below, communication methods which utilize
molecular messengers become increasingly attractive, a notion
supported by the ubiquity of molecular signaling in biological
systems, usually with identical molecules. In a large portion of
previous work, time-varying signal molecule/token concentration
is used as the observable and various analyses performed. How-
ever, from an information-theoretic standpoint, concentration
masks the underlying process which consists, fundamentally,
of signal token emission, diffusion through some medium, and
reception. In this paper we establish a lower bound on identical
token signaling with energy constraints and thereby indirectly
provide max-min bounds on concentration-based signaling rates.

Index Terms—Diffusion channel capacity, molecular signaling,
timing channel capacity

I. INTRODUCTION

SCALE-APPROPRIATE signaling methods become impor-
tant as systems shrink to the nanoscale. For systems

with feature sizes of microns and smaller, electromagnetic
and acoustic communication become increasingly inefficient
since energy coupling from the transmitter to the medium
and from the medium to the receiver becomes difficult at
usable frequencies. Biological systems, with the benefit of
lengthy evolutionary experimentation, seem to have arrived
at a moderately common solution to this signaling problem –
use of identical tokens which diffuse through some medium
between sender and receiver.

A fair amount of work on nano-scale communications
has focused on diffusion of signaling molecules and a large
portion of this work has explicitly considered time-varying
concentration profiles as the fundamental signal measurement
[1]–[4]. While this is an excellent first approach, concentration
is a collective property of the process and masks the underlying
physics of signal token release by the transmitter and capture
by the receiver. This observation begs the question of truly
fundamental limits on the capacity of such channels.

In what follows we consider a basic abstraction of molecular
signaling wherein identical signaling molecules (tokens) are
released from a transmitter according to some transmission
schedule and each molecule is perfectly captured at the re-
ceiver with some medium-modulated reception schedule [5].
Building on previous work [5]–[8], we define the asymptotic
(many channel use) model more precisely and provide general
lower bounds on identical tokens channel capacity. In addition,
since the molecule release and capture process comprises the
underlying physics of concentration-based analyses, in the
limit of large numbers of molecules these results supply a max-
min bound for channels which use time-varying concentration
as the information-carrying signal.
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Fig. 1. Token release channel with reordering.

II. PROBLEM DESCRIPTION

Repeating some of the development of [6]–[8] for clarity,
assume that M identical tokens are emitted at times {Tm},
m = 1, 2, ...,M and each is captured at the receiver. The
duration of token m’s passage between source and destination
is a random variable Dm. These Dm are assumed i.i.d. with
fDm(d) = g(d) = G′(d) where g() is some causal probability
density with mean 1

µ and CDF G(). We also assume that g()
contains no singularities. Thus, the first portion of the channel
is modeled as a sum of random M -vectors

S = T + D (1)

for which we have

fS(s) =

∫ s

0

fT(t)g(s− t)dt (2)

where g(s − t) =
∏M
m=1 g(sm − tm) and we impose an

emission deadline, Tm ≤ τ , ∀m ∈ {1, 2, ...,M}. The asso-
ciated emission time ensemble probability density fT(t) is
assumed causal, but otherwise arbitrary. We define the launch
and capture of M tokens as a “channel use.” If we assume
multiple independent channel uses, then the usual coding
theorems apply [9] and the channel’s figure of merit is the
mutual information between T and ~S, I(~S;T).

At this point it is tempting make a direct analogy to Bits
Through Queues [10]. However, since the tokens are identical
we cannot necessarily determine which arrival corresponds to
which emission time. Thus, the final output of the channel is
a reordering of the {sm} to obtain a set {~sm} where ~sm ≤
~sm+1, m = 1, 2, ...,M − 1. We write this relationship as

~S = PΩ(S) (3)

where Pk(), k = 1, 2, · · · ,M !, is a permutation operator
and Ω is a permutation index which produces an arrival-time
ordered ~S from the argument S. Incidentally, we define P1()
as the identity permutation operator, P1(s) = s. We note that
the event Si = Sj (i 6= j) is of zero measure owing to the no-
singularity assumption on g(), Thus, for analytic convenience



we will assume that fS(s) = 0 whenever two or more of the
sm are equal. This assumption also assures that the Ω which
produces ~S in equation (3) is unique.

Thus, the density f~S(~s) can be found by “folding” the den-
sity fS(s) about the hyperplanes described by one or more of
the sm equal until the resulting probability density is nonzero
only on the region where sm < sm+1, m = 1, 2, ...,M − 1.
Analytically we have

f~S(s) =


M !∑
n=1

fS(Pn(s)) s1 < s2 < · · · < sm

0 otherwise

(4)

We can likewise describe f~S|T(s|t) as

f~S|T(s|t) =


M !∑
n=1

g(Pn(s)− t)u(Pn(s)− t) ordered si

0 o.w.
(5)

where u(Pn(s) − t) =
∏M
m=1 u([Pn(s)]m − tm) and u() is

the usual unit step function.
With these preliminaries done, we can now begin to examine

the mutual information between T, S and ~S.

III. MUTUAL INFORMATION BETWEEN T AND ~S

The mutual information between T and S is

I(S;T) = h(S)− h(S|T) (6)

Since the Si given the Ti are mutually independent, h(S|T)
does not depend on fT(t). Thus, maximization of equation
(6) is simply a maximization of the marginal h(S) over the
marginal fT (t), a problem explicitly considered and solved for
a mean Tm constraint in [10] and under a deadline constraint
with exponential i.i.d. {Dm} in [6].

The corresponding expression for the mutual information
between T and ~S is

I(~S;T) = h(~S)− h(~S|T) (7)

Unfortunately, h(~S|T) now does depend on the input distribu-
tion and the optimal form of h(~S) is non-obvious. So, rather
than attempting a brute force optimization of equation (7) by
deriving order distributions [5], we first invoke simplifying
symmetries.

Consider that an emission vector t and any of its permu-
tations Pn(t) produce statistically identical outputs ~S owing
to the reordering operation. Thus, any fT() which optimizes
equation (7) can be “balanced” to form an optimizing input
distribution which obeys

fT(t) = fT(Pn(t)) (8)

for n = 1, 2, ...,M ! and Pn() the previously defined permuta-
tion operator. We will therefore restrict our search to “hyper-
symmetric” densities fT(t) as defined by equation (8).

If we assume fT() is hyper-symmetric, then it is easy to
show that fS() must also be hyper-symmetric. From equation
(2) we have

fS(Pn(s)) =

∫ Pn(s)

0

fT(t)g(Pn(s)− t)dt

If we define t′ = P−1
n (t) we then have fS(Pn(s)) = fS(s).

The hyper-symmetry of fS(s) leads to a simple expression
for f~S(s). First we define S1 as the region in s-space for which
s1 < s2 < · · · < sm. Similarly define disjoint regions Sn as
those for which if s ∈ Sn then Pn(s) ∈ S1. That is, Sn is the
region in s-space in which application of permutation operator
Pn() orders the components from smallest to largest.

Following equation (4) we have f~S(s) = M !fS(s) for s ∈
S1. We can then write

h(~S) = −
∫
S1 M !fS(s) log (M !fS(s)) ds

= −M !
∫
S1 fS(s) log fS(s)ds− logM !

But since fS(s) is hyper-symmetric, we also have

h(~S) = −
M !∑
n=1

∫
Sn
fS(Pn(s)) log fS(Pn(s))ds− logM !

which owing to hypersymmetry becomes

h(~S) = h(S)− logM ! (9)

We state this result as a theorem.
Theorem 1: If fT() is a hyper-symmetric probability density

function on emission times {Tm}, m = 1, 2, ..,M , and the first
passage density is non-singular, then the entropy of the size-
ordered outputs ~S is h(~S) = h(S)− logM !

Next we turn to h(~S|T). A zero-measure edge-folding argu-
ment on the conditional density is not easily applicable here,
so we resort to some sleight of hand. As before we define Ω as
the permutation index number that produces an ordered output
from S. That is, PΩ(S) = ~S ∈ S1. Specification of the random
tuple (Ω, ~S) is equivalent to specifying S and vice versa. Just
as in our derivation of h(~S), this equivalence requires that we
exclude the zero-measure “edges” and “corners” of the density
where two or more of the ~si are equal.

We then have,

h(S|T) = h(Ω, ~S|T) = h(~S|T) +H(Ω|~S,T) (10)

which also serves as a definition for the entropy of a joint
mixed distribution (Ω is discrete while ~S is continuous). We
then rearrange equation (10) as

h(~S|T) = h(S|T)−H(Ω|~S,T) (11)

H(Ω|~S,T) is the uncertainty about which Sm corresponds
to which ~Sm given both T and ~S, and we note that 0 ≤
H(Ω|~S,T) ≤ logM ! with equality on the right for any density
where all the Tm are equal.

We can then, after assuming that fT() is hyper-symmetric,
write the ordered mutual information as

Theorem 2:

I(~S;T) = I(S;T)−
(

logM !−H(Ω|~S,T)
)

(12)

That is, an information degradation of size logM ! −
H(Ω|~S,T) ≥ 0 is introduced by the sorting operation.

Since h(S|T) is a constant with respect to fT(t), maxi-
mization of mutual the information in equation (12) requires
we maximize h(S) +H(Ω|~S,T).

Mutual information is convex in fT(t) and the space FT

of feasible hyper-symmetric fT(t) is clearly convex. Thus, we
can in principle apply variational [11] techniques to find that
hyper-symmetric fT() which attains the unique maximum of
equation (7). However, in practice, direct application of this
method can lead to grossly infeasible fT(), implying that the



optimizing fT() lies along some “edge” or in some “corner” of
the convex search space. In other work [7], [8] we consider the
(somewhat difficult) problem of developing tight upper bounds
on I(~S;T). Here we concentrate on general lower bounds for
this mutual information.

IV. FORMALIZING THE SIGNALING MODEL

In the introduction we defined a channel use as the launch
and capture of M tokens under a deadline constraint on
emission times. We then (essentially) assumed sequential (or
parallel) independent channel uses so that the figure of merit
was the mutual information I(~S;T). Here we consider more
physically plausible conditions.

For instance, energy is a key resource in most systems.
Thus, a good figure of merit for communication efficiency
is nats/joule. In a biological context, a natural definition
of capacity would then be nats/token since signal molecule
construction (often a protein in biological systems) requires
a known amount of energy. At roughly 4 ATP per amino
acid [12], construction of a 100-amino acid protein would
require 400 ATP – a significant cost even in comparison
to an elevated 6 × 104 ATP/sec total energy budget during
cell replication (E. Coli [13]) when one considers that many
signaling molecules must be produced. In a human-engineered
system, one could use pre-fabricated tokens, but even then,
steady state operation would require tokens transport back to
the receiver with some energy per token requirement. Thus,
it seems useful to rewrite emission time constraints as a
constraint on average token production ρ (tokens/second). Our
previous emission constraint is then

τ = τ(M) =
M

ρ
(13)

So, consider figure 2 where sequential transmissions of
M tokens – channel uses – are depicted. We will assume a
“guard interval” of some duration γ(M, ε) between successive
transmissions so that all M transmissions are received before
the beginning of the next channel use with high probability
(1 − ε). We further require that the average emission rate,
M/(τ(M) + γ(M, ε)) satisfies

lim
ε→0

lim
M→∞

M

τ(M) + γ(M, ε)
= ρ (14)

A convenient choice of γ(M, ε) is ετ(M) for any ε > 0.
We then require that

lim
M→∞

Prob{~SM ≤ τ(M)(1 + ε)} = 1 (15)

We can interpret equation (15) as given arbitrarily small ε we
can always find a finite M∗ such that

Prob{~SM ≤ τ(M)(1 + ε)} > 1− ε

∀M ≥ M∗. We can now derive conditions on first passage
time densities under which equation (15) is true.
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Fig. 2. k successive M -token emissions.

Calculating a CDF for ~SM is in general difficult since
emission times Tm might be correlated. However, for a fixed

emission interval [0, τ(M)] we can readily calculate a worst
case CDF for ~SM and thence a deterministic upper bound
on the actual signaling epoch duration that is satisfied with
probability 1− ε. That is, for a given emission schedule t, the
CDF for the final arrival is

F~SM |t(s|t) =

M∏
m=1

G(s− tm)u(s− tm)

so that

F~SM (s) =

∫ τ(M)

0

fT(t)

M∏
m=1

G(s− tm)u(s− tm)dt

However, it is easy to see that

F~SM (s) ≥ GM (s− τ(M))u(s− τ(M))

since G(s− tm) is monotone decreasing in tm.
For s = τ(M)(1 + ε) we have

F~SM (τ(M)(1 + ε)) ≥ GM (
Mε

ρ
) (16)

and we require limM→∞GM (Mε
ρ ) = 1 which for conve-

nience, we rewrite as

lim
M→∞

M logG(
Mε

ρ
) = 0 (17)

Thus, to satisfy equation (17), (logG(εMρ ))−1 must be asymp-
totically supralinear in M .

If rewrite logG(Mε
ρ ) in terms of the CCDF Ḡ() and note

that log(1− x) ≈ −x for x small, we have

Ḡ(
Mε

ρ
)− ε ≤ log

(
1− Ḡ(

Mε

ρ
)

)
≤ Ḡ(

Mε

ρ
) + ε

for sufficiently large M . Thus, a first passage distribution
whose CCDF satisfies

lim
M→∞

MḠ(
Mε

ρ
) = 0 (18)

will also allow satisfaction of equation (15) with τ(M) = M
ρ

and γ(M, ε) = ετ(M).
Since all first passage times are non-negative random vari-

ables, the mean first passage time is

E[D] =

∫ ∞
0

Ḡ(x)dx (19)

The integral exists iff 1/Ḡ(x) is asymptotically supralinear
in x. Thus, if the mean first passage time E[D] exists, then
equation (18) is satisfied. Finally, in the limit of vanishing ε
we have

lim
ε→0

lim
M→∞

M

τ(M) + γ(M, ε)
= lim
ε→0

ρ

1 + ε
= ρ

as required by equation (14)

V. CAPACITY LOWER BOUNDS

A. Capacity Lower Bound in Nats Per Token

The maximum mutual information between T and ~S per to-
ken given M launched tokens with timing constraint τ(M) =
M/ρ is

Cq(M) =
1

M
max
fT()

I(~S;T) (20)



We define the limiting capacity in nats per token as

Cq = lim
M→∞

Cq(M) (21)

Cq(M) will be monotone increasing in M since concatenation
of two emission intervals with durations τ/2 and M/2 tokens
each is more constrained than a single interval of duration τ
with M tokens.

We can derive a simple lower bound on Cq(M) by noting
that equation (12) and the definition of equation (20) with
τ(M) produces

Cq(M) = maxfT()

[
I(S;T) +H(Ω|~S,T)

]
− logM !

≥ maxfT() I(S;T)− logM !
(22)

because 0 ≤ H(Ω|~S,T) ≤M !.
From [6] we know that the univariate maximum I(S;T )

subject to T ≤ τ and a mean first passage time µ−1 is also
minimized when the mean first passage time density g() is
exponential with parameter µ. Following [7] we have for any
finite M and a finite launch deadline τ(M),

max
fT()

I(S;T) ≥ min
g()

max
fT()

I(S;T) = M log

(
1 +

µτ(M)

e

)
(23)

which means,

Cq(M) ≥ log

(
1 +

µτ(M)

e

)
− log(M !)

M
(24)

for a launch deadline τ(M).
Using equation (13) and Stirling’s approximation, logM ! =

M logM −M +O(log(M)) we have the following sequence
of simplifications

1
M

(
M log

(
1 + µ

ρeM
)
− logM !

)
log
(

1 + µ
ρeM

)
− logM + 1− 1

MO(log(M))

log
(
e
M + µ

ρ

)
− 1

MO(log(M))

Defining χ = µ
ρ , the ratio of the token uptake rate to the

release rate, and then taking the limit as M →∞ we obtain

lim
M→∞

Cq(M) = logχ (25)

We summarize the results with a theorem:
Theorem 3: Given an average rate of signaling token

production ρ as defined in equation (14) and any i.i.d. first
passage time distribution with mean µ−1, the timing channel
capacity Cq(χ) in nats per token obeys

Cq(χ) ≥ max {logχ, 0} (26)

where χ = µ
ρ

We emphasize that the Theorem (3) bound is general and
applies to any first passage time density g() with mean µ−1.

B. Capacity Lower Bound in Nats Per Unit Time

The duration of a signaling epoch is τ(M)+γ(M, ε). Thus,
for a given number M of emissions per channel use we define
the channel capacity in nats per unit time as

Ct(M) = maxfT()
I(~S;T)

τ(M)+γ(M,ε)

= Cq(M, τ(M)) M
τ(M)+γ(M,ε)

where the Cq(M, τ(M)) explicitly denotes an emission in-
terval of duration τ(M). However, since we define ρ =

M
τ(M)+γ(M,ε) we then have

Ct(M) = ρCq

(
M,M

(
1

ρ
− γ(M, ε)

M

))
(27)

For any given tuple (ρ,M, ε), a positive interval duration
τ(M), such that all tokens are received with probability 1− ε
by the end of the signaling epoch, either exists or does not. So,
assume that a valid τ(M) exists. We know from the previous
section that 2Cq(M/2) ≤ Cq(M). We also know that

Cq (M, τ(M)− α) ≤ Cq (M, τ(M))

for α > 0 since increasing the allowable emission interval
cannot decrease the maximum mutual information. We also
know from the previous section that if E[D] exists, then the
guard interval duration, γ(M, ε) can be sublinear in M . So, if
we set τ(M) = M/ρ, then Cq

(
M,M

(
1
ρ −

γ(M,ε)
M

))
is an

increasing function of M whose limit is Cq . We summarize
with the following theorem:

Theorem 4: If E[D] exists, then the capacity in nats per
unit time of the token release timing channel obeys

Ct = ρCq (28)

where Cq is defined in equation (21) and ρ is the average
token emission rate.

C. Special Case Lower Bounds: exponential first passage

We have the following theorem from [8]:
Theorem 5: For exponential first passage with parameter µ

and launch deadline constraint τ , the corresponding I(S;T)-
maximizing launch density is

fTm(t) = 1
e+µτ δ(t) + µ

e+µτ [u(t)− u(t− τ)]

+ e−1
e+µτ δ(t− τ)

(29)

m = 1, 2, ...,M . We then have

H(Ω|~S,T) = EK1
[logK1!]

+ EK2

[(
K2 µτ

1−p2 −
µτM

(1−p2)(µτ+e)

)
logK2!

]
(30)

where K1 and K2 are a binomial random variables over M
trials with success probabilities p1 = e

e+µτ and p2 = 1
e+µτ ,

respectively.
And since the associated maximized I(S;T) is M log(1 +

µτ
e ) [6] we then have the following Lemma:

Lemma 1: For exponential first passage with parameter µ,
a launch deadline of τ and fT() given by equation (29) we
have I(~S;T) as

M log(1 + µτ
e )− logM ! + EK1

[logK1!]

+EK2

[(
K2 µτ

1−p2 −
µτM

(1−p2)(µτ+e)

)
logK2!

] (31)

where K1 and K2 are a binomial random variables over M
trials with success probabilities p1 = e

e+µτ and p2 = 1
e+µτ ,

respectively.
Given exponential first passage, Lemma 1 provides a lower

bound on I(~S;T) for a deadline launch constraint. We now
examine limM→∞

I(~S;T)
M where we assume the launch con-

straint is specified by τ(M) = M
ρ as in sections V-A and

V-B. To begin, remember that µτ(M) = µ
ρM ≡ χM



and then note that
(
M
k

) (
1

1+χM

)k (
1− 1

1+χM

)M−k
reduces

to M(M−1)···(M−k+1)
Mkk!

(
1

1
Mχ+1

)M (
1
χ

)k
. A similar series of

simplifications [8] leads to the following theorem:
Theorem 6: For exponential first passage and T ∈

[0,M/ρ]M , the channel capacity in nats per token obeys

Cq(χ) ≥ logχ+ e−
1
χ

∞∑
k=2

(
1

χ

)k
(kχ− 1)

log k!

k!
(32)

VI. DISCUSSION & CONCLUSION

We have described a basic model for a tokens timing
channel wherein identical tokens are released and travel in-
dependently to a receiver with information conveyed by the
timing of arrivals. We have derived general machinery for
the analysis of such channels and provided lower bounds on
channel capacity under the assumption that the mean first
passage time between sender and receiver is finite. The lower
bounds on capacity are on the order of a half nat per first
passage time.

It is worth noting that free diffusion (Brownian motion)
first passage times are not finite and thus not well-behaved
from an information theoretic capacity standpoint. However, in
any finite spatial-extent system, physical constraints on tokens
motion enforce finite first passage. It is also noteworthy that
by considering tokens in the limit of large M per signaling
interval, our results in principle bridge the gap between token
channel descriptions and signaling agent concentration-based
descriptions. That is, though the signaling problem formula-
tion is epoch-based (M tokens per emission period τ , and
ρ = M/τ constant), with large M (and concomitantly large
τ ), the “instantaneous” concentrations of tokens within an
emission period are not so constrained. Thus, the “codewords”
used by a token channel look like time-varying concentrations
as time is blurred. And since such blurring obscures the
fine-grain temporal information contained in ~S, the lower
bounds on token channel capacity provide max-min bounds
for concentration-based channel capacity.

It is also worth noting that the general lower bound of
Cq = logχ is exactly the capacity derived in Bits Through
Queues [10] for the exponential service min-max channel.
Thus, potentially disordered arrivals confer an advantage via
implicit increases of token launch-time freedom.

The question of tokens number vs. timing information is
worth exploring briefly. Consider that instead of fixing the
number of tokens per epoch, we might send different numbers
of tokens in each epoch. We have shown that Cq(M) is at least
linear in M . In contrast, the maximum amount of information
conveyed per epoch by the number of tokens is exactly logM
– strongly sub-linear in M . The argument also applies to
Ct(M) since the guard interval is proportionately larger for
small M (larger-M intervals are more temporally efficient
and therefore higher rate). Thus, in terms of information
transfer, timing information seems strongly preferred, at least
asymptotically.

Our lower bounds on channel capacity in nats per token
(equation (26) and equation (32)) and the corresponding
bounds in nats per passage time (equation (28)) are shown
in figure 3. Increasing χ increases the emission interval
relative the mean first passage time and thereby increases the
information content of any individual token. In addition, since
successive tokens may be less likely to interchange position,

Fig. 3. Lower bounds for Cq , Ct
µ

vs. χ.

1
M

(
logM !−H(Ω|~S;T)

)
approaches zero. Thus, the simple

lower bound of equation (26) (and correspondingly equation
(28)) meets the lower bound for exponential first passage
which has minmax I(S;T). But perhaps most interesting is
the implication that there may exist optimum emission rates
for a given channel as evidenced by the shape of the Ct/µ
curves in figure 3. This feature echos [1] where an optimum
burst interval for signaling molecules in a diffusive channel
was derived. However, since we do not yet know the channel
capacity nor useful upper bounds, we do not know how tight
our lower bounds are. It is therefore premature to say whether
an optimum emission rate is a feature of the identical token
timing channel, as tantalizing a prospect as that may be.
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