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Abstract—The minimum necessary aggregate link capacity in
a telecommunications network is directly proportional to the
mean distance between nodes. The mean internodal distance
is therefore an important network characteristic. This study
provides the surprising result that most network topologies,
including those constructed at random, display mean internodal
distances caparable to those of many carefully designed networks.
Thus, careful selection of network topology to minimize the mean
internodal distance may be important in only the most sensitive
applications. And even in such sensitive applications, an almost
randomly chosen network topology may be the best choice.

1. INTRODUCTION

ULTIHOP networks must pass messages between

source and destination nodes via intermediate links
and nodes. Assuming propagation delay is ignored, the mean
amount of time the average message stays in a multihop
network is directly proportional to the mean distance, in
hops, between nodes. Thus, the aggregate link capacity of
the network is also directly proportional to this “mean
internodal distance.” In addition the mean internodal distance
is proportional to the average delay between sending and
receiving a message as well as being inversely proportional
to the channel efficiency of a network.!

This study considers the following question:

Given a set of N nodes and L directed links,
what level of connectivity and mean internodal
distance can be expected of most networks?

Similar questions have previously been asked of completely
random graphs (1], [2]. Unfortunately, primarily extremal
properties such as the maximum internodal distance (graph
diameter) rather than mean properties have been studied. An
extremal property such as graph diameter, although useful
in upper-bounding the minimum mean internodal distance,
does not relate intimately to the important network attribute
of aggregate capacity. Thus, diameter is only of limited
usefulness in this regard.
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IThe channel efficiency 7 of a network is the proportion of new source
traffic to old traffic en route to its destination. (see [4]). The mean internodal
distance is the inverse of 7. Thus, under uniform loading, only a completely
connected network has a channel efficiency of 1.0 since its mean internodal
distance is exactly one.

Fig. 1. Model network with 8 nodes and 15 directed links.

Through analysis and experimentation this study has re-
vealed that many network topologies show remarkably similar
characteristics. Thus, careful selection of network topologies
vis a vis mean internodal distance may be warranted only
in the most sensitive applications. A further surprising result
of this study is that a large number of almost randomly
constructed networks show smaller mean internodal distances
than more regular seemingly efficient network topologies such
as Shufflenet [4], [5], Hypercube [8] and others.

II. BACKGROUND

A. Concepts and Definitions

e The Connection Matrix

A useful representation of network connectivity is the
connection matrix.2 The connection matrix, C, is an N x N
matrix of ones and zeroes in which a nonzero emtry, c¢ij
corresponds to a link from node i to node j. The number
of nonzero entries is therefore L.

e In-Degree and Qut-Degree

Define the number of links emanating from node 7 as pout
and the number of links impinging on node ¢ as pin. The terms
po"t and pin are also called, respectively, the out-degree and
in-degree of node i. For example, p$"t = 2 and pit = 1 for
the network of Fig. 1.

Since all outgoing links must impinge on a node and
all incoming links must emanate from a node, the average

in-degree must equal the average out-degree. This average

2Similar to the adjacency matrix [3].
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degree, p = L/N where L is the number of links in the
network, is a network parameter of considerable interest since
it is intimately related to the mean distance between nodes.

o Mean Internodal Distance

Consider the network depicted in Fig. 1. Its mean inter-
nodal distance, k, may be calculated as follows. Starting at
node 1,5 nodes 2 and 3 may be reached in one hop. Nodes
5,6, 7, and 8 may in turn be reached from nodes 2 and 3 in
one hop. Thus 5, 6, 7, and 8 are reachable in two hops from
node 1. Finally, nodes 1, 2, 3, 4, 5, 6, 7, and 8 are reachable
from nodes 5, 6, 7, and 8. However, only node 4 has not been
previously visited. Therefore only node 4 is called reachable
in three hops.

To calculate the mean internodal distance first define h;j, as
the number of nodes reachable in k hops starting at node i.
Then define d; as the number of hops necessary to reach the
node(s) farthest from node 4. Then, in the preceding example
we have

hig=1
hi1 = 2
hia = 4
hiz=1
d = 3. 1

The mean distance from node 1 to the rest of the network is
then

_ hii+2hin+3ms 13

hy . = — = 1.625. )
> hak
k=1
In general,
d;
E khm
7 _ k=0
hi = —Z— (3)
hik
k=1

Another measure which will prove useful is the mean number
of new nodes reached on the kth hop, averaged over all
network nodes,

N
1
he = ; Rik. )
The mean internodal distance for the network is then
N Z khy,
Z )

i=1

Ehk

For the network shown, A = 1.84375. A more formal state-
ment of this procedure is

(©)
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which simplifies to

N i
po L z{zkhm} ™
if the network is connected, i.e.,
di
E hic = N (8)
k=0
for (L <i<N).
Since connectivity is not always assured, define
L&
Lin =+ Z hij €
j=0

as a measure of nodal connectivity. If a given node is con-
nected then all other nodes are reachable from it and I';oo = 1.
If, however, the node is not connected then I'joo < 1. This
measure is readily extended to include the entire network as
follows:

N
1
Ty =+ ZF“" (10)
i=1
For a connected network, T'oo = 1. Otherwise, I'ioo < 1. I'g
thus provides a measure of network connectivity which can be
used in addition to the mean internodal distance.

B. Rings, Manhattan Streets, Hypercubes, Shufflenets and h

Using the definition of (1) the mean internodal distance h
for several networks which are often cited in the literature
may be derived. In most cases simple analytical results can
be obtained.

e Rings

A ring network is shown in Fig. 2. It is connected with
pott = pit = 1 and d; = N for all i. Thus, n; = 1 for all
1<i<Nandl<k< N and h is readily calculated as h
= (N - 1)/2. The ring is minimal in that it uses the fewest
links possible to achieve connectivity.

e Manhattan Street Networks

A Manhattan Street Network [6] is shown in Fig. 3. N nodes
are arranged in a rectangular grid of dimensions X x Y = N.
Nodes on the edges are connected to nodes on the opposite
edge so that the structure could be mapped onto a torus.
Link directions alternate by rows and columns much as do
the streets of Manhattan. Thus, X and Y should be even,*

peit = pi" = p = 2 and the number of links L = 2N. In
general there is no analytic expression for the average distance
between nodes in the Manhattan Street Network. However, for
the special case of both X and Y divisible by 4, the mean
internodal distance is found to be’
- X+Y 4

h=2Tl o2
' . T w

(1
4Except where either X' or Y is 1. In this case, the variable not equal to
unity is unconstrained.
5This result has been verified for N < 50,000 by computer calculation
but remains unproven analytically.
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Fig. 2. A ring network with 8 nodes.
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Fig. 3. A Manhattan Street Network with X' x }" nodes. Notice that the
directions of the directed links alternate from row to row and from column
to column. Also notice that links from nodes on the edges “wrap around” to
nodes on the opposite edges.

Thus, for X = Y the mean internodal distance grows as
VN/2.

e Hypercubes

The nodes of a hypercube [8] network are the vertices of
k-dimensional hypercube. Thus, the number of nodes in a
hypercube network is N = 2% and the out-degree/in-degree
of each node is k. Note that the number of directed links used
in L = Nk. The mean internodal distance is h = 1/2k. A
hypercube of degree 3 and eight nodes is shown in Fig. 4.

o Shufflenets

The nodes of a Shufflenet are arranged in k£ columns of
p* nodes. Thus, N = kp* and the in-degree = out-degree = p.
The number of links used is L = Np and the mean internodal
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Fig. 4. A hypercube network with 8 nodes and 12 bidirectional links.

A Shuffienet with 8 nodes and 16 links. Notice the staged structure

Fig. 5.
and the identical link pattern between stages. Also notice that the structure
“wraps around” at the right-most stage.

distance is given by

whki(k+0@k—ﬂ)

Bshuﬂlene = =0 =0 (12)
t kpk
which reduces to
- 3k -1 k1
hshufﬂenet = 2 - P (13)

pEip—-1)

as similarly derived in [4].° A Shufflenet with p = 2, k =
2(N = 8) is shown in Fig. 5.

In Fig. 6, h as a function of network size N is plotted for
the various networks. The comparison is slightly misleading
in that networks with differing number of links per node
are compared. However, Fig. 6 does illustrate that networks

61n [4] the total network traffic is assumed to be kp* — 1 since traffic from

a node to itself is not considered. Such self-traffic is considered here although
it is assumed that it requires zero hops to reach its destination.
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Fig. 6. A comparison of the mean internodal distances for various networks.
The ring has the largest h followed by the manhattan street network (MSN).
The hypercube has seemingly small T as compared to the previous two and in
some cases as compared to shufflenet (solid lines with no symbols). However,
the out-degree of the hypercube is 2h so that when compared to a shufflenet
with the same number of nodes AND comparable out-degree, the hypercube
has a higher mean internodal distance. For example, the hypercube curve at
(32.2.3) is a network with 32 nodes and out-degree 5. The shufflenet with
out-degree 4 and 32 nodes has substantially lower h. This effect is amplified
with increasing N

such as the ring and the Manhattan Street Network impose
much larger mean internodal distances as N increases. The
hypercube imposes similar properties when compared to a
Shufflenet (with a comparable number of links per node). Thus
Shufflenet appears to be efficient in terms of providing a low-
mean internodal distance with few links per node. Therefore,
attention will be restricted to Shuffienet for the purposes of
comparison.

III. RANDOM AND SEMI-RANDOM NETWORKS

A. A Description

Consider a set of N nodes and L links. The total number
of networks T which may be constructed is’

N2
Trandom - li L ] (14)
Any network chosen at random from this set is considered
completely random. Notice that even for small N and L,
Trandom 1S VEry large.® Also notice that over the ensemble
of networks, each node has an average of p = L/N incoming
links.

However, this definition of completely random networks, in
which the number of links is fixed but distributed randomly
over the entries in the connection matrix, is difficult to analyze.

7 Corresponding to L nonzero entries in the N x N connection matrix.
8For ¥ = 8 and L = 16, Trandom = 5 X 1014
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In also has the disturbing property that a given node may
receive or extend absolutely no links. Therefore, a subset of
networks was chosen which preserves the general character
of randomness while being more analytically tractable and
precluding the possibility of complete nodal isolation. Specif-
ically, each node must have exactly p outgoing (or incoming)
links [1]. Such networks will be called semirandom. The
number of possible networks in this case is,

T R

For N = 8 and p = 2, Teemi = 4 X 101!, which is still a
very large number.

Notice that no stipulation was made as to the level of
connectivity in such networks. In short, both random and
semirandom networks may not be connected, although they do
in general show high levels of connectivity. Nonetheless, since
connectivity is a desirable property of a network, steps can be
taken to ensure connectivity. Such networks as are defined here
as “connected semirandom networks.” Connectivity is ensured
by adding links at random to 2 ring network. Thus, p — 1
outgoing (or incoming) links are added at random to each
node in the structure.® The ring was chosen as the starting point
since it uses the fewest links to ensure connectivity. This leaves
the maximum number of remaining links thereby maximizing
the number of different possible networks. Notice that any
network which contains a ring network is Hamiltonian'® by
definintion. This general structure therefore covers a large
range of networks of interest. For example, Shufflenet, the
Manhattan Street Network (with an even number of columns
or rows) and the hypercube are all Hamiltonian. The number
of such networks is,

Q

N
N = 1] . (16)

T — [
connected —semi p— 1

For N = 8 and p = 2, Teonnected—semi = 6 X 10® which is
substantially smaller than semirandom and random networks,
but still reasonably large.

B. Analytic/[Experimental Methodology

The properties of semirandom and connected semirandom
networks will be examined by considering the connectivity
of a single node. Specifically, for a given node, the mean
internodal distance and the total number of reachable nodes
are computed. If this process is repeated for many different
networks, a statistical picture of nodal connectivity of the
ensemble of possible networks can be obtained. This idea
forms the basis of both the experimental and analytic approach
of this paper; analyze the connectivity for many networks from
the vantage point of a single node.

C. Analysis of Semirandom Networks

To be rigorous one could start at a given node and produce
the probability distribution on the number of new nodes
9This structure is similar to the “chordal ring” [10], [9].

10 A Hamiltonian network contains at least one closed path which covers
every node exactly once [1]-[3].
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reached in one hop. For a semirandom network the number
of new nodes reached in one hop will be either p or p — 1.
Using this one-hop distribution, the distribution of new nodes
reached in 2 hops could be obtained. Repeating this process,
a probability distribution may be constructed for the number
of new nodes reached in any given number of hops. From
these hop distributions, the mean internodal distance for the
network as well as the variation of this quantity from node
to node can be calculated. The probability distribution on the
level of connectivity would also be derived in this process.
However, this method is cumbersome for large N owing
to the large number of probability distributions which must
be calculated. Therefore, an approximation is used (see Ap-
pendix). The set of recursive equations describing the mean
number of 1) new nodes hy reached on hop & and 2) Ty the
fraction of nodes reached up to and including hop k is given

below.
P\
hi+1 = N(1 - T%) 1*(1—]—\7‘) } amn
Tpyr = [y + 121 (18)
k1= L N
These equations may be combined to obtain the composite,
Tpyr =14 (T — 1N Tr=Te-) (19)

where a = (1 —p/N).

Fig. 7 shows 'y versus k using both the analytic approxi-
mation and the average of 100 computer simulations. The
agreement is close for various N and p. As could be expected,
however, the approximation is less accurate for N < 100.
The mean internodal distance as a function of network size
N for various numbers of links, L = Np is plotted in
Fig. 8. T, for the semirandom networks is also provided.
The characteristics of the Shufflenet are shown for comparison.

For small p and N this comparison is misleading since the
semirandom networks are not highly connected on average,
ie.,, (p =2 — T'x = 0.8). However, for larger p and N where
I'so — 1.0, the comparison is reasonable. In these cases it can
be seen that the semirandom networks provide mean internodal
distances smaller than the corresponding Shufflenet. The desire
to extend this intriguing result to connected networks with
smaller p and N prompted a study of connected semirandom
networks.

D. Experiments with Connected Semirandom Networks

As mentioned previously, a connected semirandom network
may be constructed from a ring by assigning the remaining
p — 1 links per node at random. Unfortunately, the connectiv-
ity properties of such networks are difficult to analyze. Thus,
a number of semirandom networks were constructed and their
average properties explored.

Shown in Fig. 9 are plots of b versus N for connected semi-
random networks. Shufflenet is also shown for comparison.
In keeping with the properties of unconnected semirandom
networks, the mean internodal distance is comparable to but

1 The mean internodal distance for the network is the mean of the hy
distribution (suitably normalized of course).
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Fig. 7. A montage comparing theoretical and experimental [y curves for
unconnected semirandom networks as functions of the number of nodes
N and the out-degree p. The theoretical curves are the solid lines while
the experimental curves are formed by open circles. Notice the excellent
agreement for N > 100.
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Fig. 8. A comparison of unconnected semirandom networks (open circles)
and shufflenets (solid lines) as functions of number of nodes V and outgoing
links per node L. For p = 2 the comparison is flawed since the semirandom
networks are on average unconnected; I'5c is substantially less than 1.0. For
p > 4, however, the comparison is more reasonable since I & 1.0. In this
case it can be seen that the semirandom nets have comparable h for N < 1000
and increasingly smaller 2 for N > 1000.

larger than that of Shufflenet for smaller N. However, the
difference in mean internodal distance between Shufflenet and
connected semirandom networks decreases monotonically with
increasing N so that for N > 1000 the semirandom networks
have substantially smaller mean internodal distances.
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Fig. 9. A comparison of connected semirandom networks (open circles;
standard deviation about mean is smaller than symbol size and therefore not
shown). with shufflenet (solid lines). The same characteristics seen with the
unconnected random networks are evident; for N > 1000 the semirandom
networks have increasingly smaller mean internodal distances.

Thus, with no network plan other than the initial very
general ring structure, a network emerges spontaneously which
has mean internodal distance comparable to or better than that
of an efficient network such as Shufflenet.

[V. DiSCUSSION

A. The Moore Bound

In comparing semirandom networks to Shufflenet an impor-
tant question has been ignored. Given L links and N nodes,
what is the minimum h achievable? Although this difficult
combinatorial optimization problem has eluded general solu-
tion owning to the size and complexity of the space describing
such networks, a simple bound may be provided.

Consider a set of N nodes each with out-degree p arranged
in a p-ary tree structure. If the level in the tree is denoted by
k then ng = pk nodes are reached in each level until the final
level, f where N — (p/ — 1)/(p — 1) nodes are reached. This
tree structure affords the maximum growth in that any only
new nodes are reached at every level!? Thus, the growth of
hy for any network is strictly bounded by that of the p-ary
tree. This result is called the Moore bound [5], [7]."

12 However, there exists no network for which every node is the root of a
p-ary tree (a hypothetical but unrealizable Directed Moore Graph [7]).

13 An important stipulation, implicit in the definition of the Moore bound,
is that either the in or out-degree of the nodes be fixed. This condition also
guarantees that the complexity of the switching elements within the nodes
remains manageable. For example, in a star network one node serves as a
central distribution point by taking N — 1 inputs from the other N — 1 nodes
and distributing the appropriate traffic to these same N -1 nodes. The mean
internodal distance for this network is less than 2, but the central node is a
high-complexity N —1 x N —1 switch. In contrast, the switching complexity
of the networks considered here is much smaller (please see [13] for further
details).
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Fig. 10. The mean internodal distances for shufflenet and for connected
semirandom networks are compared to the Moore bound, the absolute mini-
mum £ achievable for and network with p links per node (for p = 2, 3, 4).
Notice that the Shufflenct curves diverge from the Moore bound for large N’
whereas the semirandom curves parallel the Moore bound.

The h of the p-ary tree is

(20)

_ 1f~1kk N pf =1
=y Dt (BT

This bound provides a minimum h for a network with
p outgoing links per node. In Fig. 10 the Moore bound is
compared to Shufflenet and connected semirandom networks
and seen to be =1 hop lower. Notice the manner in which the
Shufflenet curve diverges from the Moore bound for large N
whereas the connected semirandom curve parallels the Moore
bound.

This raises the question of how closely the Moore bound
may be approached. Networks such as the perfect shuffle-
exchange [17] are known to provide very low-mean internodal
distance. Unfortunately, the variation of mean distance across
nodes in the network is large. Thus, the perfect shuffle is
“unfair’. Nonetheless, the low h produced by this network
and the almost geometric growth of its hi is of interest and
is considered elsewhere [13].

B. Comments on the Structure of Low h Networks

The surprising ability of semirandom networks to provide
low-mean internodal distances prompts the question “Why?”
One explanation is suggested by examining the hy versus
k dependence of semirandom networks. The hjy versus k
for a Shufflenet and a semirandom network of equal size
are superimposed in Fig. 11(a). Notice the similarities and
differences in the shape of the two curves. Initially, both grow
geometrically. However, the Shufflenet curve then abruptly
flattens whereas the semirandom network curve continues to
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grow. Since the “area”* under both curves must be identically
N, this abrupt flattening leads to a larger mean of the distri-
bution () and greater variation about h. Conversely, the Ay
versus k of the semirandom network does not flatten abruptly
yielding a more narrow distribution with a smaller mean value.

This general observation is illustrated in Fig. 11(b) wherein
the widths of the hy distributions for Shufflenet and the
connected semirandom networks are plotted as a functions of
N for various p. For N > 1000 the semirandom networks
show significantly smaller variation about an already smaller
mean internodal distance.

The flattening of the hy, distribution for Shufflenet is directly
attributable to the “staged” structure of Shufflenet in which
N = sp® nodes are arranged in s stages of p°® nodes each.
Thus, the maximum number of new nodes reachable on a given
hop is p* and this limit is reached rapidly due to the geometric
growth. In contrast, the number of new nodes reachable on a
given hop in semirandom networks is not bounded by such a
topological constraint as evidenced by the much larger peak of
the hy versus k distribution. Thus, the network designer who
desires small A should avoid structures with many identical
stages if it forces a premature flattening of the hy curve.

C. Throughput Performance

For regularly constructed networks maximum throughput is
usually found by calculating the maximum link load, /ipax in
response to a uniform traffic distribution. For example, the
source associated with each node is assumed to emit one unit
of traffic per unit time. This traffic is uniformly distributed to
the rest of the network. The mean amount of time messages
must stay in the network to reach their destination (sojourn
time) can then to used to determine the necessary aggregate
link capacity of the network. If each link traversal is assumed
to require one unit of time, then h is the mean sojourn time.
Thus, the required aggregate link capacity link capacity is
given by

C;= Nh. (21)
The average link capacity is then

= Nh/L. (22)
The normalized throughput is then given by

T = U/lmax- (23)

The tacit assumption in this calculation is that all network
links should be of equal capacity. Thus, the deviation of any
one link load from the nominal mean link load I leads to
decreased throughput. Regular networks such as Shufflenet
can achieve perfect throughputs of 7' = 1.0. In contrast, a
semirandom network does not generally achieve such perfect
throughput. In limited tests, semirandom networks had poor
(T =~ 0.2) throughput performance. This poor performance
may be qualitatively attributed to many individual nodes of
a semirandom network having unequal numbers of incoming

14 By “area” it is meant the summation >~ hi.
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Fig. 11(a). A comparison of hy for shufflenet (solid line with circles) and
100 simulations of connected semiradom networks (solid lines). N = 4608,
p = 2. Notice that the simulation curves do not differ appreciably from each
other. Also notice that the ensemble of hj for the semirandom networks
is “peakier” and narrower than the shufflenet curve. This property tends to
produce smaller mean internodal distances and tighter distributions about that
mean. Also notice that the ensemble for the 100 simulation trials is tightly
packed. This property suggests that there is little variation from node to node
in the mean distance to the rest of the network. The semirandom networks
are thus reasonably “fair” in providing access to the network. (b) The width
(o5,) of the hy, curves for shufflenet (solid lines) and connected semirandom
networks (open circles) are plotted as a function of N for the values of
p = 2,3, and 4. The width of the h; curve provides a measure of the
variability the mean internodal distance from a given node. For N' < 1000
the widths are comparable but as N — oc the width for shufflenet increases
whereas that for the semirandom networks seems to stay constant.
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and outgoing links. This unbalanced link input and output
might lead to variations in link loading and thus to decreased
throughput.

It should also be noted that the link loading variation
depends upon the routing scheme used. Although a number
of different schemes were employed in the tests, no search for
the optimal routing pattern was performed. Nonetheless, the
performance of the different routing schemes did not show
tremendous variation. Furthermore, the same routing schemes
employed on Shufflenets achieved throughputs of T =~ 0.9:
leading to the tentative conclusion that the structure of the
semirandom network, not the routing scheme, was the deciding
factor.

However, the notion of throughput based upon equal ca-
pacity links may be more an analytic expedient for regular
network rather than an engineering reality; especially in the
case of modern fiber optic systems. Older technologies such as
copper cable and microwave links, once installed, were of vir-
tually fixed capacity. Adding substantial capacity might entail
laying another cable or redesigning a microwave antenna: both
nontrivial physical plant investments. Since networks must
usually grow with time, this difficulty of increasing capacity
may have provided an impetus for maximizing the capacity of
each and every link rather than sizing to suit current needs.

This difficulty may not be relevant for fiber optic systems
since the fiber itself is of virtually infinite capacity. Any
changes in capacity may be accomplished by changing the
receiver/transmitter pair attached to the fiber ends or by simply
adding pairs at different frequencies as in a wavelength divi-
sion multiplexing scheme. Thus, providing links of differing
sizes may not be at all problematic.

Since the necessary aggregate capacity of a network is
directly proportional to the mean amount of time (the mean
internodal distance assuming one time unit per hop) messages
stay in the network, networks with the smallest mean inter-
nodal distance require the smallest aggregate capacity. Since
greater bandwidth implies greater cost, the total bandwidth
used by the network (the aggregate capacity) should be kept
to a minimum. Alternately, for a given aggregate capacity,
more traffic may be carried if the network has a smaller
mean internodal distance. When need-based link sizing can
be reasonably employed, these criteria favor the semirandom
network in many cases.

D. Routing Complexity

Another possibly detrimental property of semirandom net-
works is their irregularity. More regular networks such as
Shufflenet can use simple routing algorithms [11], [12]. For an
irregular network an explicit routing table is required at each
node rather than a simple algorithm. The need for a routing
table at each node, however, may not be too onerous since at
worst, the memory burden at each node is proportional to N.
In addition, if stress is applied to a network wherein links are
caused to fail, then having some knowledge of the network
topology at each node is a valuable asset regardless of the
network structure.

Other criteria important for routing such as the availability
of alternate paths in the event of congestion [14], [15], [16] or
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link failure have not yet been considered. However, in light of
the result that the mean internodal distance under deflection
routing seems to be proportional to the normal mean internodal
distance [14], semirandom networks should perform well using
deflection routing.

V. CONCLUSION

It has been shown that most multihop networks with N
nodes, L links and fixed out-degree display surprisingly low-
mean internodal distances. It is therefore a relatively simple
task to find networks with mean internodal distances compa-
rable to or surpassing those of more regular networks. For this
reason, careful selection of network topology to minimize the
mean internodal distance as well as the necessary aggregate
link capacity may be important in only the most sensitive
applications. And even in such sensitive applications, an
almost randomly chosen network may be the optimal choice.

In addition, semirandom networks may be particularly well-
matched to fiber optic networks. The capacity of a fiber
optic cable is primarily constrained by the speed and num-
ber (assuming wavelength-division multiplexing) of transmit-
ter/receiver pairs connected to its ends. In microwave or
copper cable systems the transmission medium itself is a
limiting factor. Thus, uneven distribution of capacity by proper
distribution of transmission/reception resources may be more
readily achievable in fiber optic systems. Since the link loading
in a semirandom network can be reasonably uneven, fiber
optics and semirandom networks could prove a good match;
procuring networks with minimum aggregate capacity (num-
ber of transmitter/receivers) is a reasonable design criterion.
Alternatively, the low-mean internodal distance provided by
semirandom networks would allow more traffic to be carried
for a given aggregate capacity.

APPENDIX: AN APPROXIMATION TO
hj FOR SEMIRANDOM NETWORKS

Consider the N x N connection matrix associated with an V
node network. Assume that each entry has a probability of p/N
of being nonzero. Then each row and column of the matrix
has an average of p nonzero entries. This matrix approximates
the semirandom network connection matrix with N nodes and
p = L/N outgoing links per row as well as the completely
random network with exactly L links distributed over the N
nodes.

Now consider an arbitrary row of the matrix corresponding
to some network node. Given that this node is already covered,
the average number of new nonzero entries in that row is
(N —1)p/N. Thus, the average number of new nodes reached
in a single hop is

hy = (N - 1)p/N. (A1)
The average percentage of nodes covered in one hop is then

Iy =1/N+ (N -1)p/N*=To+hi/N. (A2)

To calculate the average number of new nodes reached
in 2 hops consider the h; nodes reached in the previous
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hop. Notice that if any of these h; nodes has a nonzero
entry in a previously uncovered column of the connection
matrix, then that column is added to the total of new nodes
reached in 2 hops. The probability that a given column is
covered by nonzero entries in the rows of the h; nodes is
1 — Prob(notcovered) = 1 — (1 ~ pN)". Thus, the average
number of nodes reached in 2 hops is

he= (N =T - =-p/N)™). (A

The basic idea is generalized in the following set of equa-
tions:

hi
hrt1 = N(1 - Fk)[l - (1 - ]—l:]-) } (A4)
h
Tis1 =T+ ’;\71. (A5)

Combining equations (A.4) and (A.5), recursive equations in

either ' or h may be obtained.
k .
N-3h {1— (1— N) ] (A.6)
P )N<rkfrk—l)

i=0
Fk+1=1+(r\k—l)(l—ﬁ

Equation (A.6) is subject to the initial condition of ho = 1
and (A.7) is subject to '_; = 0 and o = 1/N.

hi+1

(A7)
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