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Low Mean Internodal Distance Network
Topologies and Simulated Annealing

Christopher Rose, Member, IEEE

Abstract— Networks have been found through simulated an-
nealing with mean internodal distances lower than any previously
reported for a given number of nodes N with a maximum of p
outgoing links per node. These networks form the closest known
approximations to Moore networks. However, the improvements
in mean internodal distance obtained are relatively small (a few
percent) and this improvement decreases rapidly with increasing
p. Simulated annealing also seems to promote uniformity (over
individual nodes) in mean distance to the rest of the network. This
side-effect of the annealing process might be useful in regularizing
other network attributes.

The annealing process also revealed that there exist neigh-
borhoods of low mean internodal networks. This structure of
the network space might be used in designing improved search
algorithms for low mean internodal distance networks.

The relation between average nodal switching complexity and
mean internodal distance was briefly explored through simulated
annealing. Initial sharp decreases in mean internodal distance
could be had through moderate increases in switching complexity.
However, further decreases required much larger increases in
average complexity.

I. INTRODUCTION

HE previous paper [1] has shown that semi-randomly

constructed networks have surprisingly small mean dis-
tances between nodes. This property is useful in that smaller
mean internodal distance implies smaller aggregate link ca-
pacity. Thus, in principal, less capacity need be allocated for
networks with small mean internodal distances. This intriguing
property of semi-random networks, however, suggests more
subtle issues. Given a set of nodes with p or fewer outgoing
links per node, what is the minimum mean internodal distance
achievable. Or equivalently, how closely may the Moore
bound [4], [1] be approached. Likewise, what is a good set
of rules for constructing such a network?

One approach to this problem would be an exhaustive
search of all possible networks with given N and L. For
any reasonably sized network, however, the large number of
possible networks which must be evaluated and the computa-
tional complexity of providing such an evaluation renders this
method futile. Thus, a simulated annealing approach was taken
whereby candidate networks were modified incrementally. At
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each step, the modification was either adopted or not adopted
with some probability depending upon whether the change
lowered or increased the mean internodal distance. Of course,
such a technique cannot be guaranteed to converge to an
absolute minimum. Nonetheless the net effect of this process
was to produce networks with lower mean internodal distances
than the initial candidate.

Using simulated annealing, networks have been found with
mean internodal distances lower than any previously reported
for a given number of nodes N with a maximum of p outgoing
links per node (N < 160,p < 5). These networks form the
closest known approximations to Moore networks. However,
the improvements in mean internodal distance obtained are
relatively small (a few percent) and this improvement de-
creases rapidly with increasing p. This phenomenon was
also observed in [6] and is therefore of primarily theoretical
interest.

A possibly practical by-product of the simulated annealing
process is its promotion of uniformity (over individual nodes)
in mean distance to the rest of the network. This side-effect
of the annealing process is useful in that it promotes “access
fairness” over the network nodes even when the properties
of the initial network are grossly unfair. Furthermore, this
result suggests that an annealing approach might be useful
when a given network attribute must be made uniform over
the network nodes.

The results also suggested other theoretically interesting
properties which were briefly investigated.

1) The space of all possible networks seems to have some
structure with respect to mean internodal distance. Specifically,
the annealing process revealed that networks with low mean
internodal distance lie in local minima “basins”. This result
is rooted in the observation that the annealing process did not
greatly alter either the mean internodal distance or the network
structure. Conversely, networks with larger mean internodal
distances were modified dramatically. These structural results
might be used to comb the search space more efficiently.

2) There appears to be an inverse relationship between
aggregate switching complexity of the network (as defined
by the average number of switching crosspoints per node)
and the mean internodal distance. Mean internodal distance
decreases with increasing switching complexity. Starting from
a uniform network with identical numbers of incoming
and outgoing links, slight increases in complexity yield
large decreases in mean internodal distance. However,
further decreases are increasingly expensive in terms of
complexity.
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Model network with 8 nodes and 15 directed links.

Fig. 1.

II. BACKGROUND

A. Network Representation

There are a number of ways to represent the connectivity
of a network [1], [4]. The one which proves most useful here
is the link table.

Consider a network of N nodes and L links. Any such
network may be represented by numbering the nodes from 1
to N and then providing a table listing the connections, each
line of the table corresponding to a node. So, for example,
if node 1 has directed links to nodes 10 and 99, then the
line corresponding to node 1 will have the entry 10,99. The
total number of lines in the link table will be N and the
total number of table entries will be L. The number of links
emanating from a node (out-degree) is given by the number
of link entries on the corresponding line of the table. The
number of links impinging upon a node (in-degree) is given by
the number of times the corresponding number appears in the
table. This notation is compact and is amenable to computer
manipulations.

B. Mean Internodal Distance

The formalisms of this topic are covered in detail in [1]. A
short example is provided here to illustrate the calculation of
mean internodal distance.

Consider the network depicted in Fig. 1. Its mean internodal
distance h may be calculated as follows. Starting at node 1,!
nodes 2 and 3 may be reached in one hop. Nodes 5, 6, 7 and 8
may in turn be reached from nodes 2 and 3 in one hop. Thus,
5, 6,7, and 8 are reachable in two hops from node 1. Finally,
nodes 1, 2, 3,4, 5, 6, 7, and 8 are reachable from nodes 5, 6, 7,
and 8. However, only node 4 has not been previously visited.
Therefore only node 4 is called reachable in three hops.

To calculate the mean internodal distance first define h;j, as
the number of nodes reachable in k£ hops starting at node <.
Then define d; as the number of hops necessary to reach the
node(s) farthest from node i. Then, in the preceding example

Node 1 itself is considered reachable in 0 hops.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 40, NO. 8, AUGUST 1992

we have
hip =1
hll = 2
hiz =1
dy = 3. 6]

The mean distance from node 1 to the rest of the network is
then
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C. Why Simulated Annealing?

Initially, a direct approach to the problem of finding net-
works with the lowest mean internodal distances might be
contemplated. Consider a set of N nodes and L links with
out-degree fixed at p = L/N. The total number of networks
T which may be constructed is

=(3)"

Notice that even for small N and p, T is very large.? Thus,
for any reasonable number of nodes, an exhaustive search for
the best network is futile given modern computing methods.

©)

III. METHODS: SIMULATED ANNEALING

Simulated annealing is a process whereby candidate so-
lutions to a problem are repeatedly evaluated according to
some objective function and incrementally changed to achieve
better solutions [2]. The nature of each individual change is
probabilistic in that there is some probability it worsens the
solution. However, the probability is skewed so that changes
which serve to minimize the objective function occur with
higher frequency. In addition, an “annealing schedule” is
followed whereby the probability of allowing a change which
worsens the solution is gradually reduced to zero.

Thus, simulated annealing is similar to gradient descent
algorithms wherein each change to the candidate solution is
made such that the objective function is always minimized.
The fundamental difference is that simulated annealing as-
sumes no initial knowledge of the gradient. In addition, it
allows escape from local minima by allowing changes which
increase the objective function. These two properties form the
allure of simulated annealing techniques.

The topography of the objective function is the primary
determinant of whether simulated annealing will be effective.
For example, simulated annealing is no better than random
search on a surface which is completely featureless except for
the minima such as shown in Fig. 2(a). In addition, surfaces
for which the local minima have deep basins of attraction and
the global minima shallow ones [Fig. 2(b)] will also confound
simulated annealing. The surface topography best suited to

2For N=8andp=2,T=4x10'!.
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Fig. 2. Examples of objective function variation for simulated annealing;
(a) A “golf course” surface with no features except for objective function
minima, (b) objective function with deep basins of attraction about suboptimal
minima, () Objective function with shallow basins about suboptimal minima
and a deep basin about the optimum.

simulated annealing is one in which the basins of attraction
grow deeper with more globally optimal solutions as depicted
in Fig. 2(c).

Unfortunately, the general topography of the objective func-
tion space is usually unknown. This is especially true in the
case of mean internodal distance for which a small change
in network topology such as moving one link could possibly
render a network unconnected thereby producing an infinite
change in the objective function.

Fortunately, for larger networks, the probability of pro-
ducing a disconnected network by the moving of one link
is small. In addition, good networks do tend to be “near”
other good networks as measured by number of links changed.
Empircally, simulated annealing seems to work reasonably
well to find low mean internodal distance networks. The
algorithm outlined below was used in this study.

IV. ANNEALING ALGORITHM: LINK REDIRECTION:

1) Choose a node (a line in the link table) at random.

2) Choose a link emanating from this node (an entry in the
link list) at random.

3) Choose a target node at random and tentatively modify
the network so that the chosen link impinges on the new target
node.

4) Evaluate h for this tentative modification.

5) Conditionals:
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« If the network is disconnected, restore the unmodified
network and go to 1.

« If % is increased, adopt the change with probability
inversely proportional to the size of the increase times
some factor, x > 0 which decreases toward 0 with
increasing number of trials (corresponding to some
“annealing schedule”), then go to 1.

« If  is decreased, adopt the change, then go to 1.

In all cases the following annealing schedule was used to
reduce & to near zero. This ad hoc schedule was chosen after
some experimentation.

Annealing Schedule: Ad hoc:

1) k = .01/50,000 trials.
2) k = .001/20,000 trials.
3) k¥ = .0001/15,000 trials.

4) k = .00001/10,000 trials.
5) k = .000001/5,000 trials.
6) STOP.

IV. RESULTS

A. Minimum h Networks

A reasonable heuristic for the choice of starting network is
to use one with known good mean internodal distance proper-
ties. One network with mean internodal distances approaching
the Moore limit [4] is the perfect shuffle [5] as shown in Fig. 3.
For N = 160 and p = 23 a shufflenet [6] achieves an h of
6.03125 and a similar semi-random network [1] achieves an
average hqy. of 6.4. The perfect shuffle, however, has an hof
5.76; substantially lower than either the semirandom network
or the shufflenet. Thus, the perfect shuffle provides a good
heuristic starting point for the annealing process.

The histogram of the mean distances from each node
is provided in Fig. 4(a)-(c) for the Shufflenet, semirandom
network and for the perfect shuffle. Since all nodes have
identical characteristics in shufflenet, the associated histogram
is an impulse at h = 6.03. The histogram of the semi-random
network is more diffuse and has a mean width of oy, = 0.194
about i = 6.26. The histogram of the perfect shuffle is
broader still with a mean width of o3 = 0.262. This relatively
large variation across nodes is characteristic of the unannealed
perfect shuffle and to a lesser extent, the unannealed semi-
random network. Thus, for the perfect shuffle and semi-random
topologies, access to the network varies from node to node.*
For Shufflenet, access from each node is identical.

Five annealing trials were run starting from the perfect
shuffle network with N = 160 p = 2. Another five control
trials were run starting from semirandom networks. Using
the semirandom network, the lowest mean internodal distance
Pumin achieved was 5.74. Using the perfect shuffle network, an
Pronin = 5.61 was achieved and represents the lowest known
mean internodal distance for a network with N = 160 and
p = 2 and a reduction in h of 2.6%. This result seems

3 A single annealing run for the N = 160 p = 2 network required many
hours on a CRAY X-MP computer system. The computation time varied
empirically as N2, Thus, this study is limited to networks of size N < 160.

4 This variation is most pronounced for p = 2 and decreases quickly with
increasing p.
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Fig. 3. The perfect shuffle network with :\" = 6 nodes and L = Np = 12
links.
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Fig. 4. Histograms of mean internodal distance for each network node.
(a) Shufflenet, (b) connected semirandom network, (c) perfect shuffle net-
work.

to corroborate the assumption that networks with low 7 lie
in some sense “near” one another in the space of possible
networks.’

A more important feature is illustrated in Fig. 5(a) and (b)
wherein histograms of the mean distances from each node for
the annealed semirandom A = 5.74 network and the h = 5.61
annealed perfect shuffle network are shown. Notice that the
variation between nodes is much reduced from that seen in

3For comparison, the Moore bound for such a network is & = 5.456.
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Fig. 5. Histograms of mean internodal distance for each network node after
annealing; (a) Annealed perfect shuffle, (b) annealed connected semirandom
network.

Fig. 4(b) and (c). It seems that the annealing process serves
to equalize the initially uneven distribution of mean distances.

In Fig. 6 the minimum % found through the annealing
process is plotted versus network size N for various p. These
results are compared to both the comparable perfect shuffle
network and the Moore bound.® It may be seen that some
reduction in mean internodal distance is achieved by the
annealing process. For p = 2 and N < 160, an average of
4.6% reduction was noted as compared to the perfect shuffie
starting network. The magnitude of these reductions, however,
decreases markedly with increasing p. For p = 3,4,5, the
average reduction was only 1.9%, 1.5%, 1.6%, respectively.
Thus, for p > 2, simulated annealing is unable to achieve
much lower % than the perfect shuffle network.

However, such a result is seen to be inevitable when % is
examined as a function of p for both the Moore bound and
shufflenet for fixed N (Fig. 7). The % of the perfect shuffle
and the Moore bound converge with increasing p. Thus, a
decrease in the relative efficacy of simulated annealing would
be expected when p is large and the starting network is the
perfect shuffle. In short, when p is large, the perfect shuffle
is near-optimal in mean internodal distance so that further
optimization has little effect.

However, the annealing process also promotes uniformity
of network properties as may be seen in Fig. 8 where oy is
plotted as a function of network size N for various p. Once
again, the most pronounced reductions in o7 are seen forp = 2
with substantially lower reductions with increasing p.

B. Mean Internodal Distance and Switching Complexity

In the previous section, only networks with constant out-
degree (number of links emanating from a node) were studied.

Shufflenet was included only for p = 2 in this comparison owing to its
limited range of network sizes for N < 160 with p > 2.
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Fig. 6. Superimposed plots of & versus N for the perfect shuffle network
(solid line, upper bound), annealed perfect shuffle networks (circles) and the
Moore bound (solid line, lower bound) for, (a) p = 2, (byp=3,()p=4
(d) p = 5. Notice the tight distribution of annealed network data (circles).
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Fig. 7. A plot of the difference in 1 (AR) between the perfect shuffle
network and the Moore bound versus p.

The choice was made for two reasons.

1) The Moore bound is only valid for networks with p or
fewer outgoing links per node.

2) Low nodal in/out degree seems to require only a low
level of “switching complexity.”

Point 1 is structural and obvious. Point 2 deserves further
attention.

Consider the so-called “star” network depicted in Fig. 9.
Most of the nodes have exactly one incoming and outgoing
link. The central node has N — 1 incoming and outgoing links.
While such a network obviously violates the conditions for
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Fig. 8. Superimposed plots of o7 versus N for the perfect shuffle network
(solid lines) and annealed perfect shuffle networks (circles) for, () p = 2,
Mp=3@©©p=4Wdp= 5. Notice the tight distribution of annealed
network data (circles).

Star Network

An N-node star network.

Fig. 9.

which the Moore bound is valid (unless p > N - 1), with
L = 2(N — 1) links this network topology is able to achieve
a mean internodal distance of less than two.” In limited trials
of an annealing algorithm which allowed the out-degree of
the nodes to vary, a star-like pattern was invariably produced
with the concomitant impressive decrease in mean internodal
distance. However, the central star node must be sufficiently
complex to switch the large number of incoming lines to
outgoing lines. By comparison, each node in the perfect shuffle
network need only switch a few incoming to outgoing lines.
In order to obtain some quantitative feel for the relationship
between switching complexity and mean internodal distance
a limited set of experiments were performed. First, the com-

Th = 2(N - 1)2/N2
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Fig. 10. Minimum mean internodal distance h versus average nodal com-
plexity, ¢ for networks with v = 16,32 and L = 2N links. See text for
further description.

plexity of a switching node was defined to be the product
of its fotal in-degree and its out-degree.® Second, several
different networks types with 2N links were subjected to
the modified annealing process wherein the outdegree of each
node was unconstrained. At each step of this annealing process
the average nodal complexity was recorded. The annealing
parameter x was varied manually so as to obtain a large
number of networks covering a wide range of % and ¢. Between
10000 and 25000 trials were performed on each candidate
network.

A distillation of the results are shown in Fig. 10 where
minimum h is plotted against the average network complexity,
¢. These minimum values are defined as the smallest values
of h obtained by the annealing process at a given level of
complexity. The asymptotic minimum h versus complexity
(parameterized by N) of star networks is also shown.

As expected, h decreases with increasing switch complexity,
c. In each case, after an initial rapid decline in R, the rate at
which % declines approaches linear. These results suggest that
initially the & of a low € network can be efficiently decreased
by increasing ¢. However, after this initial sharp decline in A,
further decreases require larger increases in complexity.

C. Contiguity of Good Solutions

The use of simulated annealing assumes some gross form
of continuity in the search space. Specifically, it is assumed
that small changes to the network produce small changes in
the objective function by which the network is evaluated.
Although this is not strictly true, it is sufficiently true that
the simulated annealing process is effective in reducing the &
of different candidate networks.

An implication of the small-modification/smali-change as-
sumption is the “nearness” of good solutions to other good
solutions. Some evidence in support of this contention is
provided visually in Fig. 11 where the graphs of several

8 Each node is assumed to have a single source and sink attached. Thus, the
nodes of a unidirectional ring network have effective in-degrees/out-degrees
of 2 rather than 1 (and therefore a complexity of 4).
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Fig. 11. Graphical comparison of networks before and after annealing for
N = 160 and p = 2. The nodes are equally spaced around the circum-
ference of a circle and the links are as drawn (without regard to direction);
(a) perfect shuffle network (3 = 5,76), (b) annealed perfect shuffle network
(R = 5.61), (c) Shufflenet (h = 6.03), (d) annealed Shufflenet (R = 5.75),
(e) bidirectional ring network (% = 40), (f) annealed bidirectional ring net-
work (R = 5.77).

networks are shown both before and after annealing. However,
since such visual depictions are highly subjective, a table
showing the number of links modified by the annealing process
for each network is given in addition (Table I).

Although each network underwent changes which notice-
ably decreased h, the end result is strikingly similar to the
initial network in the cases of Shufflenet and the perfect shuf-
fle. In contrast, consider the bidirectional ring network with
large h. The annealing process grossly changed the appearance
of the connection graph. Thus, simulated annealing, as applied
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Fig. 11. (cont.)

here, incrementally changes initially good solutions (low h
networks), whereas initially poor solutions (high h networks)
are grossly rearranged.

V. DISCUSSION AND CONCLUSIONS

A. Approaching the Moore Bound

For networks whose nodes have a maximum of p outgo-
ing links extremely low mean distance between nodes were
found using simulated annealing. The annealing process is
most effective in reducing h for p = 2 and its efficacy
decreases monotonically with increasing p since the perfect
shuffle starting network becomes near-optimal with increasing
p. Regardless, the networks found represent the lowest h
networks currently known. Equivalently, these networks also
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Fig. 11. (cont.)

represent the closest known approximations to the Moore
network [4], [1]. Since low % minimizes both the delay and
aggregate link capacity in multihop store and forward networks
[1] these networks are almost optimal in their utilization of
aggregate capacity.

B. Properties of Simulated Annealing

Since there are a very large number of possible networks
given N nodes and L links, an exhaustive search for the
networks with lowest mean internodal distance is futile using
currently available computers. Simulated annealing provided
a systematic method for the identification of low mean inter-
nodal distance networks, and indirectly gave some information
about the structure of the solution space. As such, an initial ex-
ploration using simulated annealing could in principle lead to
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TABLE 1
A TABULATION OF THE NUMBER OF LINKS MODIFIED BY THE
ANNEALING PROCESS FOR THE PERFECT SHUFFLE, SHUFFLENET, AND
THE BIDIRECTIONAL RING NETWORKS WITH .\ = 160 AND p = 2

Network Type Ah % links changed
Perfect Shuffle 2.6% 9.7%
Shufflenet 4.5% 22.5%
Bidirectional Ring 85.5% 80.6%

better search algorithms. Furthermore, since all that is required
is the evaluation of some objective function, the simulated
annealing process could find utility in the optimization of
other network attributes such as reliability or throughput/delay
performance. As an added benefit, the annealing process makes
network properties more uniform over the nodes.

However, there are limitations to the annealing process. Pri-
marily, a globally optimal solution cannot be guaranteed owing
to the stochastic nature of the process. In addition, the types
of solution obtained are heavily dependent on the modification
rule used. Another drawback of simulated annealing is the
increasing complexity of evaluating the objective function h
with increasing number of nodes and links. For this reason,
only networks with N < 160 and smaller p = (N/L) < 4
were considered here.

C. Complexity versus h

This abbreviated study showed that the mean internodal
distance of a regular network with uniform in/out-degree
can be initially lowered by increasing the average switching
complexity slightly. Switching complexity is defined as the
average number of switching crosspoints per node (assuming
crossbar type switches). Further decreases in h require larger
increase in complexity where these increases in complexity are
caused by enlarging the in-degrees and out-degrees of some
nodes. Thus, the highest complexity/lowest % networks are
star-like in structure.

Of course, these tentative observations and conclusions are
highly dependent upon the measure of “switch complexity”
used. However, the basic idea of using spatially diffuse struc-
tures so that high concentrations of switch complexity may be
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avoided at single nodes is one of the basic tenets of distributed
switching. Thus, even if for some measure of complexity
the aggregate switching complexity of a centralized network
(such as the star) is smaller than that of a more distributed
topology (such as the perfect shuffle), the issue may be one
of realizability. If it is much simpler to build many smaller
switching units than it is to build one large unit, then a
diffuse architecture where complexity is distributed over all
the network nodes is preferable. Maintaining the in/out-degree
of each node at some manageable level is then certainly in
order. Regardless, the relationship of % to maximum nodal
switch complexity is a subject worthy of further investigation.
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