500

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 37, NO. 5, MAY 1989

Rapid Optimal Scheduling for Time-Multiplex
Switches Using a Cellular Automaton

CHRISTOPHER ROSE

Abstract—Many time-multiplex switching systems require that the
incoming traffic be scheduled in order to avoid conflict at the switch
output (two or more users converging simultaneously upon a single
output). Optimal scheduling provides a means to assign traffic on
demand such that either blocking probability is minimized (unbuffered
system) or packet waiting time is minimized (buffered system). However,
computation of an optimal schedule for switches of a reasonable size (i.e.,
N = 100) may require many seconds or even minutes, whereas the traffic
demand may vary much more rapidly. Since the computation time varies
as O(N?), the problem becomes readily intractable for large N. This
computational bottleneck is overcome by using a scheduling algorithm
which is run on a simple special-purpose parallel computer (cellular

t ton). A schedule is produced in O(N) time if signal propagation
time in the automaton is considered negligible, and therefore, increases in
computation speed by several orders of magnitude should be possible; the
time to compute a schedule for a 1000 input switch would be measured in
milliseconds rather than minutes.

I. INTRODUCTION

Atime-multiplex switch routes communication traffic from
its input to output by providing intervals of duration 7
called time slots during which a fixed-length message packet
is transferred from its source to its destination. The switch
may not send two packets to the same output during the same
time slot without the loss of one or both packets. However,
since user requests for time slots are assumed to arise
randomly, there is the possibility of conflict (two or more
users converging simultaneously upon a single output). Thus,
to avoid conflict, some scheduling of the packets must be
done. If certain intuitive conditions on the distribution of user
requests are met, then a conflict-free schedule may be found.
Specifically, given a group of C time slots (frame) in which to
route user packets, a total of C packets may be routed to any
given output and a total of C packets may be handled by any
given input. If the user requests comply with this scheduling
criterion (i.e., no user requests more than C time slots for
transmission and no output is the destination of more than C
packets) then every request can be serviced [1], [2]. Optimal
scheduling of the packets is a means to maximize system
throughput while minimizing either packet blocking (unbuf-
fered system) or packet delay (buffered system). For some
systems, throughput improvements of 10-20 percent can be
realized [3].

Given that the scheduling criterion is met, providing
conflict-free (optimal) schedules! in response to a stochasti-
cally varying load has proven difficult using current computa-

Paper approved by the Editor for Communications Switching of the IEEE
Communications Society. Manuscript received September 17, 1987; revised
March 31, 1988.

The author is with AT&T Bell Laboratories, Holmdel, NJ 07733.

IEEE Log Number 8926994.

! It is worthwhile to note that the problem considered here differs slightly
from that considered by some previous workers [4]-[7]. Specifically, previous
workers were also concerned with minimizing the number of different
switching configurations required to support a given traffic demand. This
consideration is important in scanning spot beam satellite systems [1], [4]-[7]
wherein changing the switch state requires a nonnegligible amount of time;
repeated unnecessary changes in switch configuration could degrade switch
performance. In this study, however, a terrestrial system is assumed wherein
the time required to change the switch state is assumed negligible.

tional techniques. For example, the time required to optimally
schedule an N X N (N inputs, N outputs) switch with N =
1000 and C = 100 time slots per frame would be measured in
tens of seconds and a sequential computer using an efficient
algorithm.? In many applications such long computation time
renders assignment of traffic on demand impossible.

Derived in this paper is an optimal scheduling algorithm
which may be implemented with a special-purpose parallel
computer (cellular automaton) and allows extremely rapid
computation of schedules; the scheduling time for an N =
1000, C = 100 switch is measured in milliseconds. Owing to
the parallel structure, the computation time varies approxi-
mately linearly with switch size. In what follows, the problem
of finding an optimal schedule is introduced. An algorithm is
then developed to find such optimal schedules and it is then
shown how a cellular automaton may be used to realize the
algorithm.

In addition, two interesting results emerge from this study.
The first is a new proof for the existence of sets of distinct
representatives [2]. The second is the discovery of a graphical
form for Hall’s algorithm [4] for deriving sets of distinct
representatives.

II. PROBLEM STATEMENT
A. The Traffic Matrix and Diagonals

If the communication requirements (in packets) of N fuily
connected users are tabulated in matrix form, the result is a
“‘traffic matrix,”” T. Each #; denotes the number of packets
destined to output j from input i. A possible traffic matrix is
shown in Fig. 1(a) for an N = 3 switch. The constraints on
any N X N switch are that no two inputs may be connected to
the same output simultaneously and no one input may be
connected to more than one output simultaneously. These
constraints suggest that no two packets sharing the same row
or column of the traffic matrix may be transmitted (travel) in
the same time slot. Thus, conflict-free scheduling is the
problem of finding a set of ‘‘diagonals’’ through the traffic
matrix where a diagonal is a group of elements no two of
which share either a row or a column.? The boxed elements in
the matrix of Figure la form a diagonal.

B. Optimal Scheduling and Maximal Diagonals

Given a traffic matrix which meets the scheduling criterion
(the sum of entries in each row and the sum of entries in each
column do not exceed C, the number of time slots available for
transmission) there exists a schedule which carries all the
offered traffic in the allotted time slots [1]. Consider then a
matrix each of whose rows and columns sum to C. Each
diagonal in the optimal schedule must contain an entry from
every row and column. If the matrix is N X N then each

? This rough estimate is based upon a personal conversation with T. Inukai
of COMSAT Laboratories in October 1986. He recalls that his algorithms [4],
implemented in Fortran IV for N = 8 users with C roughly equal to 4000
required tens of milliseconds to produce a schedule. The computation time is
proportional to CN?2. Thus, scheduling a 1000 x 1000 switch with C = 100
would require tens of seconds. These figures, of course, are only order-of-
magnitude estimates.

3 The ‘‘diagonal’’ is also known as a “*system of distinct representatives’’ in
the literature [2], [4]-{7] and stems from P. Hall’s [2] analysis of a similar
combinatorial problem.

0090-6778/89/0500-0500$01.00 © 1989 IEEE

ROSE: SCHEDULING FOR TIME-MULTIPLEX SWITCHES

0 1
1 0
1 0
(a)
critical column

critical row—1 1
1 O
0 1

(b)
critical column

ek ek ek ———

0 O
0 O

©
Fig. 1. llustration of valid diagonals, critical rows and columns and
extraction of critical rows and columns. (a) A valid diagonal, (b) a critical
row and column, (c) traffic matrix containing only the critical row and

column from the matrix of part (b). All other entries are set to zero. See text
for full description.

criticalrow—=1 1 1
1
1

diagonal will contain N elements (have length N) and the
schedule will be composed of N such diagonals. For such a
matrix, all of whose rows and columns sum to C, finding
diagonals of length N is a pivotal problem in procuring an
optimal schedule.

For a matrix not all of whose rows and columns sum to C,
finding an optimal schedule still involves finding maximum
length diagonals. Specifically, let a column or row that sums
to C be called critical. Each diagonal in the schedule must
contain elements from all critical rows and columns. For an N
X N matrix a diagonal of length N will certainly satisfy this
condition, but a diagonal of length N may not exist. Therefore,
the optimal scheduling problem becomes one of finding a
diagonal which covers all the critical rows and columns. This
may be done by deriving a new matrix 7’ whose only nonzero
entries are those elements contained in the critical rows and
columns of the original traffic matrix. A diagonal of maximum
length through T will cover all critical rows and columns of
T.* Thus, the problem of optimal scheduling is intimately tied
to the problem of finding maximal diagonals. Fig. 1(b) and (c)
illustrate the process of deriving T”.

Finding a maximal diagonal visually in a small matrix is
simple. The difficulty of finding a maximal diagonal in larger
matrices may be appreciated be referring to Fig. 2(a) wherein
a 10 x 10 matrix with only 0 and nonzero (X) entries is
presented.’ Under visual inspection, typically eight or nine

* If there are c critical columns and r critical rows (7, ¢ < N) then the a
diagonal of at least length max (r, ¢) must exist [1], [2].

® The values of these nonzero entries may be chosen to make the row and
columns sums almost arbitrary (= the number of nonzero entries in that row
or column).

501

column number

o 1 2 3 4 5 6 7 8 ¢
o X X X X 0 0 X 0 X 0
1 0 X XX XX 0X 00
2 X 0 0 0X XX 00X
3 0 X X 0 X X 0 X 0X

nl.\r:l‘;ertiXXOXXOOOOO
5 X 0 0 0 0XX 0X o0
8 00X XX 000X X
70 XX 0X 0XO0 00
8 0 X 0 X XX 0 0 X X
» 0 X 0 0X 0 X X 00
(a)
column number

o 1 2 3 4 5 6 7 8 9
o X XXX 0 0 X 0 X 0
1 0 X X XXX 0X 00
2 X 00 0X X X 0 0[]
3 0 X X 0XXo0[XoX

pumber ¢ [X] X 0 X X 0 0 0 0 0
5 X 0 00 0XXO0 X0
s 00 XXX 00 0XX
7 0 XX 0 X 0 X 000
£ 0 X 0 XXX o0 0[XX
9 0 X 00X 0[XX 00
(b)

Fig. 2. A larger traffic matrix (10 X 10), (a) the reader is directed to find
diagonals of length 10 in this matrix (see text for description). (b) One
possible diagonal of length 10 for the matrix of part (a).

entries will be chosen and the remaining admissible element(s)
will be zero. A diagonal of length 10 through the matrix of
Fig. 2(a) is shown in Fig. 2(b) to assure the reader that such a
diagonal exists.

III. EXTENDING SUBMAXIMAL LENGTH DIAGONALS: A
GRAPHICAL APPROACH

A. Introduction

For the following development let the traffic matrix 7 be a
nonnegative integer N X N matrix whose column and row
sums are <C. As illustrated by the example of Fig. 2(a), a
maximum length diagonal is difficult to find in a large sparsely
populated matrix. Thus, the approach taken is to start with a
submaximal length diagonal and extend it an element at a time
until a maximal diagonal is found. The algorithm presented in
this section will be developed sequentially, ending in a general
approach to finding diagonals in an N X N matrix. The
algorithm is then extended to include matrices in which a
diagonal of length N does not exist but which have critical
rows and columns (columns or rows whose elements sum to
C) which must be represented in the diagonal to allow all the
traffic to be cleared in C time slots [1], [2]. The modified

502

0o 1 2 3 4 5 8 7 8 9
o X X XX 00X 0X 0
1 0 X X XXX 0 X 00
2 X0 0 0 X XX 00X
3 0 XX0 X X 0X 0X
+ XX 0XX 00000
5 X0 0 00X X 0X 0
8 00 XXX 00 0X X
70X X 0X 0 X 00 0
8 0 X 0 XX X0 0[XX
9 00X 00X 0[XX o0 0

(a)
7 9 6 3 1 8 5

1 [X 0 0 X X 0 X

2 {0 X X 00 0 X

3 |X X; 0 0X 0 X

submatrix B X 0lX 0 0 X 0 0

6]0 X|X O 0Xo x o

710 0| X O X 00X oo

g [0 X[X O 0 X X [X] X

5 00 0 X X 0 0 X [X

o [0 0][0 X X X X X X| 0

+/0 O[[X X 0 0 X X 0|0

submatrix A

©

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 37, NO. 5, MAY 1989

7 9 4 0 2 5 3 1 8§ g
1 X 00X 0 X XXX 00
2 0 X X[X0 X 00 0 X
3 X XX 0XIX 0 X 0 0
50 00X 0[X 00 X X
6 0 XX 0X 0[Xo0 X o
700X 0X 00X oX
8 0 XX 00 X XXX o
s X 0X 00 00X 0[]
00 0]0 X X 0 X X X X
4|0 0/X X 0 0 X X 0 0

®
7 9 6 4 0 3 1 8 5 2
s[X]X] 0o X 0 0X 0 X X
submatrix B9 |X| 0 [X] X 0 0 X 0 0 0

1 X X] 0 X X 0 X X

2 0 X X X]o 0o o X o

6§ 0 X 0 0X0o X o X

7.0 0 X 0 0 X o 0 X

8 0 X 0 0 X XX X o

5 00X 0 X 00 X[Xo

o0 0 X 0 X XXX 0[]

‘Mo oXXXXo0 oo

submatrix A

(d)

Fig. 3. Illustration of matrix rearrangement and extention of current diagonals using single exchanges. (a) A diagonal of length 8
through a 10 X 10 traffic matrix. This diagonal cannot be extended by choice of a nonzero nexus. (b) A rearrangement of the traffic
matrix of part (a) [obtained by row and column exchanges]. See text for description. (c) A rearrangement of the traffic matrix in part
(b) to help illustrate a single exchange. See text for description. (d) A rearrangement of the traffic matrix of part (c) used to
illustrate the final single exchange which produces a maximal diagonal.

algorithm produces a diagonal which covers all critical rows
and columns.

B. Extension by Single Exchange

Let a row or column be called uncovered if it does not
currently contain a diagonal element. A nexus is defined as a
nonzero element which exists -at the intersection of an
uncovered row and an uncovered column. Diagonal elements
may be sequentially chosen from nexi until either a maximal
diagonal is found or all remaining nexi are zero. For example,
consider the 10 X 10 traffic matrix of Fig. 3(a) in which X
denotes nonzero entries. The boxed elements comprise a
diagonal of length 8 which cannot be extended by choosing
elements in the remaining uncovered rows and columns. This
fact becomes obvious through row and column exchanges$
which render the original diagonal as a chord spanning from
the top row to the right-hand column [Fig. 3(b)]. The leftmost
columns (7, 9) and the bottom-most rows (0, 4) are not

¢ These exchanges do not alter the traffic pattern represented by the traffic
matrix. They only renumber the inputs and outputs relative to the switch, i.e.,
the communication request pattern remains the same as viewed by the users.

spanned by the original diagonal and all the entries which do
not conflict with this diagonal (lower left-hand submatrix) are
zero.

A simple way to extend the current diagonal is by
exchanging an element in the current diagonal for two
elements in the uncovered rows and columns. To simplify the
illustration of this procedure and prepare the way for
illustration of later procedures, the matrix of Fig. 3(b) is
rearranged to form the matrix of Fig. 3(c). The lower left-hand
submatrix is still zero and the diagonal is in the same position.
The difference is that submatrix A is the smallest matrix which
contains all the nonzero elements of the uncovered rows and
likewise, submatrix B contains all the nonzero elements of the
uncovered columns (see Appendix for an existence proof of
this matrix form). A single exchange is accomplished by
substituting two elements, one in 4 and one in B (dotted
boxes), for the diagonal element at which they intersect
thereby extending the current diagonal by one element. The
lines drawn between the three elements in question constitute a
Dpath between a nonzero element in submatrix 4 and a nonzero
clement in submatrix B. After rearranging the resulting
diagonal and rendering the resulting matrix in the form of Fig.

ROSE: SCHEDULING FOR TIME-MULTIPLEX SWITCHES

7 ¢ 4 0 2 6 3 1 8 5

1 [X 0|X] 0 X 0 XX 0 X
submatrixB 2 |0 X] X]o X 0 0 0 X
3 X XX 00X 0 0 X 0 X

» 00X 0 0 X 0X 00

6 0 0 [X X| 0o X0 X o
5000§X“Y“ﬂYJ§|
0ooooooxxx?

4|0 00 0 0 0|X X 0 X

submatrix A
Fig. 4. A traffic matrix in which submatrix 4 and submatrix B do not

intersect along the current diagonal thereby necessitating a double ex-
change. See text for complete description.

3(c), Fig. 3(d) is obtained. To complete the diagonal, the same
procedure as before is used as illustrated [Fig. 3(d)].

C. Extension by Double Exchange

Consider the matrix of Fig. 4. Matrix A and matrix B
contain ho elements which intersect on the current diagonal.’
Therefore, no single exchange is possible. However, the basic
principle may be applied to perform a double exchange as
follows. The submatrix C is formed by the intersection of the
rows whose current diagonal elements intersect A and the
columns whose current diagonal elements intersect B. Thus, if
the submatrix C is nonzero, then a double exchange may
always be performed as illustrated in Fig. 4. The three
elements in dotted boxes are exchanged for the two current
diagonal elements and the diagonal length is increased by one.
A path is formed from A to B in this manner. The resulting
matrix may be rearranged and a single or double exchange
performed to lengthen the diagonal unless C is identically
Z2ero.

D. Extension by Multiple Exchanges

In the case where C is identically zero, a double exchange
is impossible. Such a matrix is illustrated schematically in Fig.
5(a). A notable feature of this matrix is that the embedded
submatrix T (dashed outline), which shares no common rows
or columns with the elements of A or B, respectively, is exactly
of the form of Fig. 3(b); the lower left submatrix is zero and
the current diagonal is a chord which spans from the top to the
right side. Thus, it will be possible to rearrange T as in Fig.
5(b). Submatrices A; and B, are the analogs of submatrices A
and B in Fig. 3(c). Since such a rearrangement of 7' need only
involve the columns covered by R1 and the rows covered by
R2 in Fig. 5(a), the positions of the current diagonal elements
outside T need not be disturbed.

If A, and B, have an intersection along the current diagonal
then a path may be formed between A4, and B,. If no
intersection exists [Fig. 5(c)] then a path may still be formed
unless C; is zero. In either case, since a path always exists
between A and A; and between B and B, a path will exist
between A and B via the path between A, and B;. This
enables the extension of the current diagonal by a multiple
exchange. If C; = 0 then the same pathfinding procedure may

7 Any matrix for which A and B do not intersect may be rendered as in Fig.
4; i.e., all zeros to the left of 4 and all zeros below B (see Appendix). This
arrangement allows a clearer illustration of extension by double exchange.

503

submatrix T,

B
'
'
'
'
I
'
)
)
E
'
0 !
'
]
|
1
'
'
'
|
'
'
'
0 0 A
(a)
submatrix T,
B
tesons
:
)
B
)
H
—
'
0
)
0
'
1
|
i
'
1 C=0
)
0 0 A

Fig. 5. Matrix schematics used to illustrate extention of diagonals by
multiple exchanges. (a) A schematic of a traffic matrix for which submatrix
C is identically zero. The submatrix T is outlined by a dashed box. (b) A
rearrangement of the embedded matrix T to conform to Fig. 3(c) A path
between A and B, is traced by the dotted line. A schematic depicting a
submatrix T, in which 4, and B, do not overlap but for which C, is not
identically zero. A path is traced by the dotted line between A and B.

504

B
Bl
0 0
Cc=0 0 Ay
0 0 A
(a)
N
[=5
U i
: N
r 7Z=0 :

(b)

Fig. 6. Schematic matrices used to illustrate the stopping rule for diagonal
extension. (a) A rearranged traffic matrix at the / = 2 stage (the second
embedded submatrix T, with dotted outline). This schematic illustrates that
by construction, all 4; and B, border on the current diagonal when A4, and B;
do not overlap on the current diagonal, i.e., no type-3 diagonal elements
exist in submatrix 7; (see Appendix: Fig. 15, also Fig. 4). (b) Maximum
length diagonals in a matrix containing a zero submatrix of dimension r X
¢. Anr X ¢ zero matrix Z borders the current diagonal. U spans the N ~ r
rows above Z and V spans the N — ¢ columns to the right of Z. See text for
full description.

be performed on the resulting submatrix 7, contained in
submatrix T (just as T, was contained in T'). The procedure
can continue until a path between A; and B; in the T; submatrix
is found.

E. The Stopping Rule

Consider the matrix of Fig. 6(a). If 4, and B, do not overlap
along the current diagonal (comparable to Fig. 4) and either 4,
or B, is identically zero then, schematically, the matrix may be
represented by Fig. 6(b). Notice that an identically zero
submatrix borders the current diagonal. Extending this con-
cept, if at any stage in the search for a path between A and B
the submatrix A; and B; do not overlap on the current diagonal
and either A, or B; is zero, then an identically zero submatrix
will also border the current diagonal. This fact may be used to
define a stopping rule for the algorithm.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 37, NO. 5, MAY 1989

Theorem I:
A i= 0or B,‘ =0
implies the current diagonal cannot be extended.

Proof of Theorem I: Let all the rows above the r X ¢
zero submatrix Z of Fig. 6(b) be defined as submatrix U
(dotted box), and all the columns to the right of Z be defined as
V (dashed box). Thus, U is of dimension (N — r) X Nand V
is of dimension N X (N — c¢). The upper bound on the length
of a diagonal in any matrix is the minimum dimension of the
matrix. Therefore, the largest diagonal which could be
contained in U is of length N — r and likewise the largest
diagonal in V is of length N — c. Thus, that the largest
diagonal which could be contained in U U V'is of length / <
2N — r — c.® However, since 2N — r — ¢ = d is the length
of the current diagonal, the current diagonal is the largest
possible. The stopping rule is, therefore, very simple. If at
some point A; = 0 or B; = 0 then the current diagonal is
maximal. Q.E.D.

An important concept that will be used in the parallel
implementation of this algorithm is the equivalence of the
nonexistence of a path between A and B and the existence of
an i for which 4; = O or B; = 0.

Theorem II:
A;=0 or B;=0 is equivalent to the nonexistence

of a path between submatrices 4 and B.

Proof of Theorem II: If A; = 0 or B; = 0 then no path
between 4 and B can exist since a path must include only
nonzero elements. Conversely, if an A — B path exists, then
none of the A; = 0 and B; = 0 which contributed elements to
the path can be zero. Thus, the nonexistence of an 4 — B
path is exactly equivalent to A; or B; being zero for some
i. Q.E.D.

Combination of Theorems I and II yields the following
equivalence.

® The nonexistence of an A — B path implies that the
current diagonal is maximal.

It is interesting to note that this result defines a new but
equivalent condition for the existence/nonexistence of a
system of distinct representatives (P. Hall [2]). Specifically,
iff at some point during the extension procedure no A — B
path exists, then no complete system of distinct representatives
(diagonal of length N) exists. Thus, it is not too surprising
that the previous set-theoretic algorithm by Hall (stated
precisely in [4]) which sequentially deletes and adds members
to a set of distinct representatives is virtually identical to the
method presented here when it is recast in graphical form.

F. Ensuring Coverage of Critical Rows and Columns

A critical row or column of a traffic matrix T is one which
sums to C where C is the number of remaining time slots
allocated for transmission. If all the packets represented by the
traffic matrix are to be sent during these C time slots then these
critical rows and columns must be covered by the diagonal.
Otherwise, at the next step when only C — 1 time slots remain
the traffic matrix will violate the scheduling criterion in that
there will exist a row or column in 7 whose sum C is greater
than C — 1.

In N X N traffic matrices where a diagonal of length N
exists, the exchange algorithm will produce a diagonal of
length N which covers all the rows and columns. Thus, for
such a matrix the problem of critical row and column coverage

81t is assumed that r + ¢ = N since / cannot exceed the minimum
dimension of the matrix.

ROSE: SCHEDULING FOR TIME-MULTIPLEX SWITCHES

critical column

l

criticalrow —= 1 1 1 0 0
0°1.0 0 0
0 01 0 0
1 0 0 1 0

1:0 0 0 0
Fig. 7. A matrix in which a maximal diagonal of length 4 exists but which
does not cover all critical rows and columns (C = 3).

for diagonals generated by the exchange algorithm does not
exist. It is possible, however, for the maximal diagonal to be
of fewer elements than the dimension of the traffic matrix. In
such a case it is also possible for a maximal diagonal to leave a
critical row or column uncovered. A maximal diagonal which
does not cover all critical rows and columns is shown in Fig.
7. The exchange algorithm, as currently proposed, could
produce such a diagonal. A simple modification, however,
will preclude this possibility.

Let the initial diagonal be composed of only elements from
critical rows and columns. If any critical rows or columns are
left uncovered then they will reside in submatrix 4 and
submatrix B, respectively. In extending the diagonal through
exchanges consider only elements in the critical rows of .4 and
critical columns of B. Since all the elements involved in each
exchange will be elements contained in critical rows or
columns, the extended diagonal will cover only critical rows
and columns until there are no critical columns left in B and no
critical rows left in 4. Such a diagonal is guaranteed to exist
[1]. At this point the diagonal may be extended by the original
means without regard for critical rows and columns since all
the rows and columns covered by the current diagonal will be
covered by any extended diagonal as well. Thus, all the critical
rows and columns will remain covered.

IV. IMPLEMENTATION OF THE EXTENSION-BY-EXCHANGE

ALGORITHM
A. Introduction

The previous theoretical development described a method to
extend a randomly chosen diagonal, an element at a time,
through various exchange procedures. The basis of this
extension-by-exchange algorithm was the location of paths
between elements in uncovered rows and elements in uncov-
ered columns. Three simple observations enable the realiza-
tion of a simple parallel computer which when given a traffic
matrix as input will produce maximal diagonals as output.

® Observation 1) Let a vertex be defined as an element at
which the path changes from horizontal to vertical. Vertices
along a given path are invariant under row and column
exchanges. For exmaple, the matrix in Fig. 8(a) with a path as
shown may be transformed by row and column exchanges into
the matrix of Fig. 8(b). The path elements remain the same as
does their connectivity. Thus, the arrangement of current
diagonal elements, uncovered rows and uncovered columns in
the traffic matrix is irrelevant to the task of finding a path
between an uncovered row and an uncovered column.

*Observation 2) If a path is allowed to ‘‘wrap around’’ the
edges of the matrix, any path may be composed of solely right
— left and down — up links [Fig. 8(c)]. The leftward links
begin at current diagonal elements and end on nonzero off-
diagonal elements. The upward links begin on nonzero off-
diagonal elements and end on current diagonal elements.

505

(b)
0 0 * 0
0 * 0 0
i B~—o0—o—o—

()

Fig. 8. Illustration of path invariance under row and column exchanges, (a)
original path, (b) path of part (a) after row and column exchanges, (c) path
of parts (a) and (b) executed using only right — left and down — up links.
The paths extend around the edges of the matrix (*‘wrap around’’).

Likewise, a reverse path may be composed solely of left —
right and up — down links.

*Observation 3) For a matrix in which the current diagonal
is of zero length, each nonzero element is a zero length path;
i.e., each nonzero element is a nexus between an uncovered
row and an uncovered column.

B. Locating Paths with a Cellular Automaton

Suppose a set of switches were arranged in a matrix with
each switch corresponding to an element in a traffic matrix.
Connections with neighboring elements would occur on the
right, left, below (down) and above (up).? A structure such as
this wherein simple elements communicate directly with only
their nearest neighbors is called a cellular automaton and is
illustrated in Fig. 9. The routing function performed by each
switch would depend upon whether it was a current diagonal
element, zero or an off-diagonal element. The switches
representing current diagonal elements would route their
lower input to their left output in consonance with Fig. 8(c).
Nonzero off-diagonal elements would route r — L,U,andd
— U. Zero elements would always route # = L and d — U
also as in Fig. 8(c).

A signal injected at the right of an uncovered row would be
routed through the network according to the above routing
rules. If a path existed between that row and an uncovered
column, the signal would eventually propagate to the top of an
uncovered column as illustrated in Fig. 10. Thus, if signals
were injected into the right of every uncovered row, the
appearance of a signal at the top of an uncovered column
would guarantee the existence of a parh between an uncovered
row and an uncovered column. There are several problems
remaining, however; there may be multiple conflicting

® To simplify notation let upper case bold letters denote outputs and lower
case bold letters denote inputs.

506

= TE e
HIEQ—=®

) DOWN
Fig. 9. A cellular autornaton composed of a matrix of switches. Each switch
is mutually connected to its four nearest neighbors.

uncovered column

0 0 *
0 * 0
- B~—0—0—9—
+ * 0 0 Cd—
A © 6 ‘u‘—i uncovered row

Fig. 10. An illustration of path propagation through an uncovered row
ending in a path through an uncovered column.

paths,'® some paths may end in a cyclic path which never
reaches the uncovered columns or some paths may simply be
dead ends, again never reaching an uncovered column.
Conflicting paths are illustrated in Fig. 11(a), two dead ends
are shown in Fig. 11(b) and a cyclic path is shown in.Fig.
11(c). Obviously some method of choosing which elements
form a valid path is necessary.

Elements qoniprising cyclic paths and dead ends may be
easily identified by allowing the network to propagate signals
in the backward direction via injection of signals downward
into uncovered -columns. Specifically, let the current diagonal
elements also route / — D, nonzero off-diagonal elements
route u = D, R, and I — R, and zero elements route / = R
and u, — P. In that case, only vertices of both ascending and
descending paths would be valid vertices. Vertices of cyclic
paths and dead ends will be contained in only an ascending or
a descending pat# but not both. The reader may look to Fig.
11(a)-(c) for verification.

The first step in an algorithm which finds valid paths is one
which removes detrd end and cyclic paths. Thus,

» Step 1) Remove from consideration all elements which do
not receive both an ascending and descending path (dead end
and cyclic path removal). Specifically, impose a r # land d
2 y routing pattern on all such off-diagonal elements

A remaining problem in the location of valid paths is the
removal of conflicting paths. Since conflict occurs when
paths share the same row or column, a natural scheme to
resolve contflict is to first resolve row conflict and then column
conflict. The following three steps illustrate this concept.

10 path conflict occurs when two or more paths travel along the same row
or column.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 37, NO. 5, MAY 1989

X% 0 (1] 0

0 0 XX

(b) dead ends

(c) cycle
Fig. 11. An illustration of path types through the switching mesh. (a) For
most matrices, multiple conflicting paths exist between an uncovered row
and an uncovered column. (b) Dead ends terminate on the right side of a
current diagonal element. Since current diagonal elements do not accept
inputs from the right, the path abruptly ends. (c) A cyclic path occurs when
a path overlaps itself.

e Step 2) After STEP 1 all the remaining off-diagonal
vertices are members of a valid path. Impose ar — U and d
— U routing pattern on these vertices thereby allowing only
ascending paths and one vertex per row (one path per row).

e Step 3) All elements which have ceased being vertices
should be removed from consideration by imposing the routing
pattern of Step 1). Current off-diagonal vertices should
impose a ¥4 — R routing pattern thereby allowing only
descending paths and one vertex per column (one path per
column).

® Step 4) All remaining current diagonal elements which are
also vertices should become off-diagonal elements and all off-
diagonal vertices should become new current diagonal ele-
ments.

In. summary, Step 1) removes from consideration paths
which end or cycle before spanning the gap between an
uncovered row and an uncovered column. Step 2) resolves row
conflict, Step 3) resolves column conflict and step 4) allows
the exchange of off-diagonal vertices for vertices on the
current diagonal thereby extending the diagonal. This four-
step procedure can be applied until a maximal diagonal is
found. Since each application guarantees the extension of the
diagonal by at least one element (if possible), this procedure
need be applied a maximum of N times to find a maximal
diagonal. Coverage of critical rows and columns is guaranteed
by only injecting signals into critical rows and columns until
the current diagonal covers all critical rows and columns. The
extension procedure could then proceed as before with signals
being injected into all uncovered rows and columns.

Application of the algorithm is illustrated sequentially in
Fig. 12(a)-(e). Fig. 12(a) depicts all possible paths which

ROSE: SCHEDULING FOR TIME-MULTIPLEX SWITCHES 507

—— dead end

inject .
> cycle inject
A
0o 0 X>™* 0 0 0 0 0 0 0 O
v 0 X * o0 0 0 0 0 o0 o0 o0
0 0 0 9> X 0 0 0 0 0 0>
v v D ¢ 0o * X 0 0 0 0 0 O
0 0 X X>=* 0 0 0 0 0 0
P ¢ X 0 X * 0 0 0 o0 o0 O
0 X X 0 0 * 0 0 0 0 O |
D}f—X_O_O‘—ﬂ—*OOOOO
0 X o0 0 0 0 * 0 0 0 O
—6—6—0—6—9¢—%t 0 0 0 0
0 X o 00 X 0 * 0 0 0
D X—8—6—6—906—X—9%—1 0 0 0
<0 -0 -0 9 0 000 0 * X=9
A b o o o o o * X o
0o 0 0 00000X<:0
p 6 0 0 0 0 X * 0
~—0—0—4—0—0—6—0—6—6—06—*
p 0 0 o0 0 O 0o o *
0o 0 0 0 0 0 0 X X<0-X
. p o 0 0 0 O X—X——X
0 o0 o0 0 0 X X 0 0 0 0 inject o
D 0 0 0 0 0 X—X—6—6—06—0 inject
X 0 o0 60 0 0 0 0 0 0 O X6 6 6 6 6 6 6 o o o0
(@) (b)
inject
* 0 0 0 0 0 0 0 O 0 *0 0 0 0 0 0 0 O
0o * X 6 0 0 0 0 o p 0o * X 0 0 0 0 0 0
X 0 X * 0 0 0 0 0 o p 0o X * 0 0 0 0 0 0O
rrlU-“O'—ﬁ—O—*OO()OO P X uR—0—0—90 % 0 0 0 0 0
rU—ﬁ—Q—O—ﬁ—%OOOO P uR—6—06—0—6 0 0 0 o
tU 0 0 0 0 rU—¢—F 0 0 O P X 06 0 0 0 u 0 0 0o
0 0 0 0 o0 O *X 0 p 0 0 0 0 0 O *X 0
0 0 0 0 0 O X * 0 p 0 0 0 0 o0 0 X * 0
0o 0 0 0 0 0 0o o * p 0 0 0 0 0 0 o o0 *
0o o0 0 o 0 o r—X—8—X D 0O 0 0 0 o0 O uR—2X%—6—=X
0 0 0 o0 0 rU rU—6—6—06—0 inject P 0 0 0 0 0 X uR—6—06—6—0
Ve 0 0 @9 0 o 0 0 09 0 0 uWUR—0—6 0 ¢ 0 9 09 0 0 0 .0
©) (d)
0 0 X * 0 0 0 0 0 0 0 0
D *O*XOOOOOO
D X 0 X * 0 0 0 0 0 o0
|
D *=0—0—0—X 0 0 0 0 0
P *—6—6—06—96—9—X 0 0 0 0
P X 0 0 0 0 *—4—X 0 0 o0
p 0 0 0 0 0 o *X 0
p o 0 0 o0 0 0 X * o0
p 0 0 0 0 0 o0 0 o *
p 0 0 0 0 0 O —X—6—X
b 0 0 0 0 0 X *—8—6—0—0

*_ 000 0 0 0 0 0 o g ¢

Fig. 12. Application of the extention by exchange algorithm to a 12 x 12 traffic matrix. (a) An illustration of dead-end and cyclic
paths. Notice that each vertex (element at which the path changes direction) mediates only an ascending or descending path. (b)
An illustration of conflicting paths. Each line in the mesh denotes a bidirectional path. (c) The effect of imposingar — U,d - U
routing pattern on the possible vertices from Fig. 11(b) and the elimination of row conflict. (d) The effect of imposinga u - R
switching pattern on the off-diagonal vertices to remove column conflict and the resulting nonconflicting paths. (¢) Exchange of the
surviving off-diagonal vertices of the current diagonal elements for the paths of Fig. 11(d) and the resultant extention of the
diagonal (in this case by three elements).

508

uncovered
columns

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 37, NO. 5, MAY 1989

1 - diagonal type 1
2 - diagonal type 2
3 - diagonal type 3

4 - diagonal type 4
X 4
submatrix
B X 3
0 2
0 1
uncovered

o [o] x [x] o |}—"mo

-

submatrix

A

Fig. 13.

Grouping of four different types of current diagonal elements into

four subblocks. See Appendix for description.

contain elements that are vertices for only an ascending or
descending path (dead ends and cyclic paths). Fig. 12(b)
depicts several possible valid but conflicting paths. Fig. 12(c)
shows the effect of the routing pattern » = U, d — U on the
remaining possible off-diagonal vertices and the resolution of
row conflict. Fig. 12(d) shows the effect of a 4 — R routing
pattern and the resolution of column conflict. Finally, Fig.
12(e) shows the extended diagonal after exchange of current
diagonal vertices with off-diagonal vertices.

V. DISCUSSION AND CONCLUSION

The extension-by-exchange algorithm offers an intuitive and
graphical approach to the problem of finding maximal
diagonals in an arbitrary matrix. A set-theoretic approach to
this problem has previously been presented by Hall (precisely
stated in [4]). It is interesting to note that if Hall’s set-theoretic
algorithm is recast in matrix form, and we observe how
elements are added to and deleted from the set of distinct
representatives, then the procedure bears a striking resem-
blance to the extension by exchange algorithm. It is this
graphical approach to the problem which offers the conceptual
framework that leads directly to a special purpose computer
capable of providing diagonals rapidly.

The parallel implementation of the extension by exchange
algorithm allows the rapid calculation of optimal schedules by
using many simple processing elements (cells for short). The
speed of computation may be found by first assuming that the
total time taken for signal propagation through the network is
negligible (<1 ns). Such an approximation is valid if all the
switches are located close to one another. If logic devices,
operating in the 20-40 ns range are assumed, then each switch
will be able to perform the necessary calculations!' well within
50 ns. Thus, assume each STEP of the procedure outlined in
Section IV-B requires 50 ns. 200 ns would be necessary to
produce an extension of the current diagonal. Therefore, for a
switch of size N, at most N x 200 ns would be required to
produce a maximal diagonal. It is noteworthy that scheduling
time is virtually a linear function of /N rather than quadratic as
would be the case for a sequential computer. Let each switch
be capable of storing the value of its associated ¢; element of
the traffic matrix and when appropriate be able to decrement
this value at the end of eac 200 ns cycle [Step 4]. A complete
schedule could then be generated sequentially in CN x 200
ns. For C = 100 and N = 102, the scheduling time would be
20 ms. If the decision time for each switch of 50 ns could be
lowered to <10 ns using higher speed logic then the

! Each ‘‘switch’’ representing a nonzero element in the traffic matrix must
be able to decide whether it should change from/to a diagonal element and
whether it is a valid vertex.

scheduling time would be under 4 ms. In either case, such
speed is impossible even using current state-of-the-art sequen-
tial computers. Of course, an N = 103 parallel scheduler of
the type described would require 10° cells and may therefore
be impractical. However, for smaller N (say N = 100)
scheduling machine should be possible using current VLSI
technology.

In summary, the graphical and intuitive extension-by-
exchange algorithm provides the basis for a high-speed time-
division multiplex switch scheduler. Approximate scheduling
times for a N = 1000 input, C = 100 time slot switch should
be in the range of milliseconds as compared to seconds or
minutes using current computing technology. In addition,
owing to the parallel structure of the scheduling network and
the assumption that signal propagation within the network is
rapid compared to the response times of the individual cells,
scheduling time varies only linearly with NV rather than as the
square of N. Thus, the benefits of optimal scheduling could be
theoretically extended to a switch of virtually any size thereby
achieving performance improvements of 10-20 percent in
some networks [3].

APPENDIX

It is always possible to render a matrix such as that in Fig.
3(a) in the form of that in Fig. 3(c). Specifically, a submatrix
A with no zero columns, a submatrix B with no zero rows and
the current diagonal as shown in Fig. 3(c) may be formed by
column and row exchanges. This may be shown as follows.

Consider that each column and each row of the traffic
matrix T will have either zero or nonzero intersections with
the uncovered rows and columns, respectively. Thus, there are
four types of current diagonal elements, d;; where i is the row
of the diagonal and j is its column.

1) The intersection of row i and column j with the
uncovered columns and rows yields only zero elements.

2) The intersection of row / and the uncovered columns is
zero while the intersection of column j and the uncovered rows
is nonzero.

3) The intersection of row i/ and column j with the
uncovered columns and rows is nonzero.

4) The intersection of row i and the uncovered columns is
nonzero while the intersection of column j and the uncovered
rows is zero.

By simple row and column exchanges each of these diagonal
types may be grouped into four homogeneous subblocks as
shown in Fig. 13. This grouping yields a submatrix A with no
zero columns and a submatrix B with no zero rows. The
remaining rearrangement (to render the current diagonal as a
chord spanning from the upper edge to the right edge of the
matrix) may be accomplished by arranging the diagonal

ROSE: SCHEDULING FOR TIME-MULTIPLEX SWITCHES

type type
1 2
12‘1145678910
10 XX XX /o 0 X 0 X
e X 0(X] X|{X/X X 0 X 0
3X X 0 0]0 X X[X 0 o0
+X 0 X X|X X[X|o X o
soxxoxoxp//
60 0 0 0 0 0 X|X)|0o X
7000)()()(000__type
80 0 X X 0 X 0 XX o !
90 0 0 0 X XX 0 0 0
00 0 0 00X 0X 00
(a)
type type
1 2
1 2 J45678910
e X 0XIX|X X X 0 X o
10 XX [X][X/0o 0 X 0 X
50 X X 0|X]X 0(X 0 o0
53X X 0 0|0 X X|X o o
4X0XXXXoy/
60 0 0 0 0 0 X|X]|0 X
800XX0X0X0«Lype
70 0 0 X XX 0 0|0 [X|
90 0 0 0 X XX 0 0 0
w0 0 0 0 0 X 0X 00
(b)
Fig. 14. A specific example of a matrix in the form of Fig. 13 rearranged to

form a diagonal which spans from the top to the right-hand side of the
matrix. (a) Diagonal elements grouped by type (see Appendix and Fig. 13);
(b) matrix of part (a) with diagonal elements rearranged to conform with
that of Fig. 3(c). Notice that the rearrangement did not require any column
exchanges and that all diagonal ‘‘types’ remained in their original
subgroup.

elements within each subblock along the main diagonal of the
given subblock. Since the rows (and columns) associated with
each subblock do not intersect those of any other subblock,
this rearrangement may be done independently for each
subblock by exchanging the rows (or columns) appropriately.
The resulting matrix will be identical in form to that in Fig.
3(c). A simple example is provided in Fig. 14.

It is also readily seen that if no type-3 diagonal elements
exist (submarix A and B do not overlap on the current

509

- diagonal type 1
- diagonal type 2
- diagonal type 3
- diagonal type 4

uncovered
columns

bmatri —
su n]xganx[E‘i

0

0

2

e N

00| 0 |X

uncovered
rows
| N—)
submatrix
A
Matrix form resulting when no type-3 diagonal elements exist. See
Appendix for complete description.

Fig. 15.

diagonal), then the matrix can be put in the form of that in Fig.
4. First the rows associated with type-2 diagonal elements
must be extracted and appended to the bottom of the matrix.
Then the columns associated with these elements must be
extracted and appended to the right side of the matrix. The
resulting matrix as shown in Fig. 15 is identical in form to that
of Fig. 4.

ACKNOWLEDGMENT

I would like to thank A. S. Acampora, K. Y. Eng, H. V.
Jagadish, and B. Wittner for helpful discussions of this work.

REFERENCES

[1] A. S. Acampora and B. R. Davis, ‘‘Efficient utilization of satellite
transponders via time-division multibeam scanning,’’ Bell Syst. Tech.
J., vol. 57, no. 8, pp. 2901-2914, 1978.

[21 M. Hall, Jr., Combinatorial Theory, Ed. II. New York: Wiley,
1986, ch. 5, Distinct Representatives.

[3]1 C.Rose and M. G. Hluchyj, ‘“The performance of random and optimal
scheduling in a time-multiplex switch,”” IEEE Trans. Commun., vol.
COM-35, pp. 813-817, 1987.

[4] T. Inukai, *‘An efficient SS/TDMA time slot assignment algorithm,””
IEEE Trans. Commun., vol. 27, pp. 1449-1455, 1979.

[51 G. Bongiovanni, D. Coppersmith, and C. K. Wong, ‘‘An optimum
time slot assignment algorithm for an SS/TDMA system with variable
number of transponders,”’ JEEE Trans. Commun., vol. 29, pp. 721~
726, 1981.

[6) I Gopal, D. Coppersmith, and C. K. Wong, *‘Minimizing packet
waiting time in a multibeam satellite system,” IEEE Trans. Com-
mun., vol. COM-30, pp. 305-316, 1982.

[71 R. Ramaswamy and P. Dhar, ‘“‘Comments on an efficient SS/TDMA
time slot assignment algorithm,”’ IEEE Trans. Commun. , vol. COM-
32, pp. 1061-1065, 1984.

*

Christopher Rose was born on January 9, 1957, in
New York City, NY. He received the B.S. (1979),
M.S. (1981), and Ph.D. (1985) degrees all from the
Massachusetts Institute of Technology in Cam-
bridge, MA.

He is currently with AT&T Bell Laboratories in
Holmdel, NJ, as a member of the Network Systems
Research Department. His current technical inter-
ests include adaptive connectionist (neural) net-
works, cellular automata, communications systems
and, most recently, applications of high-tempera-
ture superconductivity to communications problems.

