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Abstract 

We present an iterative algorithm that uses randomness 
and statistical techniques to improve existing met,hods 
for recognizing protein structural motifs. Our algorithm 
is particularly effective in situations where large num- 
bers of sufficiently diverse examples of the motif are not 
known. These are precisely the situations that pose sig- 
nificant difficulties for previously known methods. 

We have implemented our algorithm and we demon- 
strate its performance on the coiled coil motif. We test 
our program LearnCoil on the domain of 34randed 
coiled coils and subclasses of 2-stranded coiled coils. We 
show empirically that for these motifs, our method over- 
comes the problem of limited data. 

1 Introduction 

One of the most important problems in computational 
biology is that of predicting how a protein will fold in 
three dimensions when we only have access to its one- 
dimensional amino acid sequence. Biologists are inter- 
ested in this problem since the fold or structure of a 
protein provides the key to understanding its biological 
function. Unfortunately, determining the three dimen- 
sional fold of a protein is very difficult. Experimental 
approaches such as NMR and X-ray crystallography are 
expensive and time-consuming (they can take more than 
a year), and often do not work at all. Therefore, compu- 
tational techniques that predict protein structure based 
on already available one-dimensional sequence data can 
help speed up the understanding of protein functions. 
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An important first step in tackling the protein fold- 
ing problem is a solution to the structural motif recogni- 
tion problem: given a known commonly occurring three- 
dimensional substructure, or motif, determine whether 
this motif occurs in a given amino acid sequence, and 
if so, in what positions. In this paper, we focus on a 
special type of a-helical motif, known as the coiled coil 
motif (see section 2), although the techniques presented 
can be applied to other motifs as well. 

Most approaches to the motif recognition problem 
work only for motifs that, are already well-studied ~ 
that is, they are known to occur in many sufficiently 
diverse proteins. This knowledge usually comes from 
biologists who have studied many examples of the mo- 
tif. However, there are many motifs for which only a 
small subset of examples are known, and this subset is 
often not rich enough to be representative of the motif. 
Thus, for lack of data, current prediction methods rang- 
ing from straightforward sequence alignments to more 
complicated methods such as those based on profiles of 
the motifs often fail to successfully identify such motifs. 

For example, in the case of the coiled coil motif, most 
known instances are 2-stranded coiled coils (i.e, coiled 
coils consisting of 2 cy-helices). As a result, known pre- 
diction algorithms work well for predicting 2-stranded 
coiled coils [7, 6, 3, 19, 26, 281, but do not work as well 
for the related 3-stranded coiled coil motif (i.e., coiled 
coils consisting of 3 a-helices), due to the lack of known 
S-stranded coiled coil sequences. That is, for 3-stranded 
coiled coils, these algorithms have a large amount of 
overlap between the scores for sequences that do not 
contain coiled coils and sequences that do. 

In this paper, we give a.n iterative method to improve 
existing statistical methods for structural motif recog- 
nition, particularly in the case where there are not suf- 
ficiently diverse or enough examples of the motif. Our 
main result is a linear-time algorithm that uses informa- 
tion obtained from a database of sequences of a specific 
motif, which we refer to as the base motif, to make pre- 
dictions about a more general motif, which we refer to 
as t.he target motif. 

The basic theoretical framework for our approach to 
structural motif recognition is due to Berger [3]. We 
build on this framework and introduce a heuristic that 
is able to improve protein structural motif recognition 
substantially for our test set of coiled coils. Our method 
hah the following key fea.tures: 
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. The algorithm iteratively scans a large database 
of test sequences to find sequences that are pre- 
sumed to fold into the target motif. The selected 
sequences are then used to update the parameters 
of the algorithm; these updates affect the perfor- 
mance of the algorithm in the next iteration. 

. In each iteration, the algorithm scores all the se- 
quences based on its current estimates of the pa- 
rameters and the theoretical framework developed 
in [3]. 

. In each iteration, the algorithm uses randomness 
to select which sequences are presumed to fold into 
the target motif. 

l The selected sequences are used in the beginning 
of the next iteration to update the parameters of 
the algorithm in a Bayesian-like weighting scheme. 

There are several ways in which our iterative al- 
gorithm is kept running in a “safe” fashion, without 
increasing the false positive rate by incorporating se- 
quences into the final database that do not fold into 
the motif. First, we begin with a mathematically sound 
scoring subroutine, that experimentally has a low false 
positive rate. Second, our method of computing likeli- 
hoods ensures that only a certain fraction of all residues 
are scored as positive examples of the motif (see sec- 
tion 3). Finally, while evaluating our program, we run 
the program with test sequences that are known not to 
contain coiled coils, and this has helped us determine 
when the algorithm is performing well. 

Implementation results. In order to demonstrate the 
efficacy of our methods, we test them on the domain of 
2- and 3-stranded coiled coils (see section 4). 

First, we show how to use our methods to recog- 
nize 3-stranded coiled coils given examples of 2-stranded 
coiled coils. In other words, starting with a base motif 
of 2-stranded coiled coils, we “learn” the target motif 
comprising of 2- and 3-stranded coiled coils. The initial 
predictor already has good performance on P-stranded 
coiled coils, so we test our algorithm by its performance 
on 3-stranded coiled coils. 

We evaluate our algorithm on 3-stranded coiled coils 
with respect to two statistical cross validation tests: the 
“leave one out” test and the “leave half out” test. In the 
first scenario, the algorithm starts with data from the 
P-stranded coiled coil database, and iterates on a test 
set t,hat cont,ains sequences which are known to form 3- 
stranded coiled coils, sequences which are thought to 
form 3-stranded coiled coils, sequences for which no 
structural information is available, and sequences which 
are known not to contain coiled coils. The category of 
each sequence in this test set is not known to the algo- 
rithm, and the sequences which do not contain coiled 
coils are given to the algorithm in order to test its ro- 
bustness. At the end of the procedure, the algorithm 
is evaluated by the number of t,he 3-stranded coiled coil 
sequences which it recognizes. Each time a sequence 
that is present in the database the algorithm is building 
is scored, it is removed from that database to avoid the 
possibility of unfairly biasing the test. In this scenario, 
we find that our algorithm greatly enhances the recog- 
nition of 3-stranded coiled coils, without affecting its 

performance on sequences that are known not to con- 

tain coiled coils. In particular, we are able to select 
93Yu of the sequences that are conjectured by biologists 
to contain coiled coils, with ILO false positives out of the 
286 sequences known not to contain coiled coils. Pre- 
viously, the best performance without false positives is 
67%. 

We also test our algorithm on 3-stranded coiled coils 
in a much more difficult scenario. In particular, instead 
of cross validating our procedure by leaving out just 
one sequence at a time when testing, the algorithm it- 
erates on test sequences that contain only half of the 
sequences known to form 3-stranded coiled coils. It is 
then evaluated by its performance on the 3-stranded 
coiled coil sequences that are not iterated upon. In this 
scenario, we also find improved performance. The 3- 
stranded coiled coil sequences are split in half 3 times, 
and on average, the algorithm is able to select 85% of the 
left out 3-stranded coiled coil sequences, wit,h likelihood 
scores higher than that of the highest scoring negative 
sequence. On average, the previous best performance 
without false positives is 67%. 

Finally, we test our program on subfamilies of 2- 
stranded coiled coils using the leave one out criterion. 
For 2-stranded coiled coils, we have a good data set con- 
sisting of a diverse set of sequences. However, to test our 
program, we simulate a limited data problem by test- 
ing our program LearnCoil on subfamilies of ‘L-stranded 
coiled coils. That is, one subfamily of 2-stranded coiled 
coils is chosen to make up the base motif, and the class 
of all 2-stranded coiled coils is the target motif. Here we 
find that we have excellent performance; i.e., we are able 
to completely learn the coiled coil regions in our entire 
P-stranded coiled coil database starting from a database 
consisting of coiled coils from any one subfamily. Based 
on our experiments, such performance does not appear 
to be possible without the use of our iterative algorit,hm. 
In particular, the best performance for the non-iterative 
approach ranges between 70 and 88%. 

Biological significance. As a consequence of this 
work, we have identified many new sequences that we 
believe contain coiled coils or coiled-coil-like structures. 
One of our more striking findings is the existence of one 
and occasionally two coiled-coil-like regions in t,he enve- 
lope glycoproteins of many r&r&ruses, including Hu- 
man Immunodeficiency Virus (HIV), Simian Immunod- 
eficiency Virus (SIV), and Human T-cell Lymphotropic 
Virus (HTLV). Independent experimental invesiigations 
have also predicted these coiled-coil-like regions in HIV 
and SIV [9, 251. Our computational analysis indicates 
that the envelope glycoproteins of retroviruses can be 
classified int,o t,wo structural groups, and a companion 
paper detailing our findings is forthcoming [S]. 

2 Further background 

?‘he coiled coil motif is found in fibrous proteins, DNA 
binding proteins, and in tRNA-synthetase protc-ins. Rc- 
ccntly it has been proposed t.hat, the 3.st,rartdetl coiled 
coil motif acts as l.hr cell fusiou mechanism for mauy 
viruses, and algorithms for predicting t,hrse structures 
could aid iu the study of how viruses invadr cells. Corn- 
putational methods [7, 261 have already idcutified such 
coiled coil regions in influenza virus hemaglut.tiuin and 
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Figure 1: Top view of a single strand of a coiled 
coil. Each of the seven positions {a, b, c, d, e, j, g} corre- 
sponds to the location of an amino acid residue which 
makes up the coiled coil. The arrows between the 
seven positions indicate the relative locations of adja- 
cent residues in an amino acid subsequence. The solid 
arrows are between positions in the top turn of the he- 
lix, and the dashed arrows are between positions in the 
next turn of the helix. 

Moloney murine leukemia virus envelope protein; both 
of these predictions have been confirmed by X-ray crys- 
tallography [13, 171. 

Coiled coils are a particular type of o-helix, consist- 
ing of two or more o-helices wrapped around each other 
with a slight left-handed superhelical twist. Coiled coils 
have a cyclic repeat of seven positions, a, b, c, d, e, j, 
and g (see Figure 1). The seven positions are spread out 
along two turns of the helix. Coiled coils show a charac- 
teristic heptad repeat with hydrophobic residues found 
in positions a and d, and this repeat makes coiled coils 
particularly amenable to recognition by computational 
techniques. 

Previous approaches to predictirrg coiled coils. 
Computational methods have been quite successful for 
predicting coiled coils [ZS, 26, 19, 3, 6, 71. Standard ap- 
proaches [28, 261 look at the frequencies of each amino 
acid residue in each of the seven repeated positions. 
Overall this singles method does pretty well. When the 
NewCoils program of Pupas et al. [26] is tested on the 
PDB (the database of all solved protein structures), it 
finds all sequences that contain coiled coils. On the 
other hand, 2/3 of the sequences it predicts to contain 
coiled coils do not. That is, the false positive rate for 
the singles method is quite high. 

Recently researchers have given a linear-time algo- 
rithm for predicting coiled coils by approximating de- 
pendencies between positions in the coiled coil using 
pairwise frequencies [3, 6, 71. This method uses esti- 
mates of probabilities for singles and pair positions (i.e., 
the probabilit,y that a particular residue is in a given 
hept,ad repeat position, and the probability that a given 
residue pair exists in a given pair of heptad repeat po- 
sitions). For a given residue’s contribution to the score, 
the algorithm considers residues at the structurally rele- 

vant distances i = 1, i = 2 and i = 4, calculating the ge- 
ometric mean of the three quantities P(k, k+i)/P(k+i), 
where P(k, k + z) is the probability of finding residues lc 
and k + i distance i apart in a coiled coil, and P(I; + ;) 
is the probability of finding residue k + i in a coiled coil. 

This method of predicting coiled coils has been very 
effective for predicting 2-stranded coiled coils. When 
tested on the PDB (t,he set of solved structures), the 
paircoil algorithm based on this method selects out all 
sequences that contain coiled coils, and rejects all the 
sequences t,hat, do not contain coiled coils. Furthermore, 
when tested on a databa.se of 2-stranded coiled coils 
(with a sequence removed from the database at the time 
it is scored), each amino acid residue in a coiled coil 
region is correctly labeled as being part of a coiled coil. 
As mentioned before, however, PairCoil does not have 
as good performance on 3-st.randed coiled coils. 

Since PairCoil has better performance than the sin- 
gles method algorit.hm, particularly with respect to the 
false-positive rate, this is the scoring method we build 
on, as well as the scoring method to which we compare 
our results. 

Related computatiorral methods. Other types of it- 
erative approaches have been applied to sequence align- 
ment and prot,ein structure prediction by researchers [30, 
1, 21, 151. Algorithmically, our approach differs from 
these approaches in two major ways. The first is our 
use of randomness to incorporate sequences into our 
database, and the second is our use of weighting to up- 
date the database (see section 3). In addition, several 
of these papers are directed toward sequence alignment, 
and sequence alignment is not so effective a tool for pre- 
dicting coiled coils, as the various subfamilies of coiled 
coils do not align well to each other. Also, since the 
goal of these other methods is often to out,put potential 
matching alignments, the testing of these algorithms is 
quite different,. In particular, although some of these ap- 
proaches use the “leave one out” criterion, to the best 
of our knowledge, none of them test performance with 
the “leave half out” criterion. 

Various machine learning techniques have been ap- 
plied to the protein structure prediction problem. The 
two main approaches are neural nets (e.g., [22, 29, 271) 
and hidden Markov models (e.g., [23, 21). Both of these 
approaches require adequate data on the target motif, 
since there is a “training session” on sequences that are 
known to contain the target motif. Our approach differs 
from these methods since it does not require well ana- 
lyzed data on the target motif per se. Instead it uses 
already available data on a base motif and generalizes 
it to recognize the target motif, by running on a large 
number of sequences, some of which are suspected to 
fold into the target motif. 

3 The algorithm 

Our algorithm is initially given a database of residues 
which are known to fold int.o the base motif. From this 
database, it calculates parameters which are estimates 
of the singles and pair probabilities for the base mo- 
tif’s positions. It is also given a set of sequences upon 
which it iterates. Our algorithm takes advantage of the 
fact that the target motif is a generalization of the base 
motif. In particular, once the algorithm has identified 
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some of the seqoeuces that are presumed to contaiu the 
target motif, it can modify its dat,abase (and ttllih ills 
estimates of the probabilities) by “adding” these newly 
found sequences. (See Figure 2.) The algorithm it.eratcs 
four basic steps: 

1. ‘The algorithm uses its estimates of the pair and 
singles probabilities to determine a likelihood func- 
tion, which maps residue scores to a likelihood of 
the residue belonging to the target motif. 

2. The algorithm scores each of the test sequences 
using the estimated probabilities, and calculates 
t.he likelihoods for each of these sequeuces. 

:3. ‘l’lic algorithm flips coins with probability propor- 
tional to the likelihood of each score to determine 
which parts (if any) of each sequence are presumed 
t.o he part of the target motif. The residues which 
are thus determined to be presumed examples of 
the target motif make up the new database for the 
next iteration. 

4. The algorithm uses the base motif database and 
the new database just determined in this itera- 
t.ion to update its estimates of the singles and pair 
probabilities for the target motif by weighting the 
t.wo databases. 

The algorithm continues iterating until the new data- 
base stabilizes. Ultimately, we use the final database 
and the parameters estimated from this database to 
make hett,er predictions about the target motif. 

Figure 2: Our basic algorithm. Initially, the algorithm 
starts off with a set of initial parameters and a set of 
test sequences upon which it iterates. In each iteration, 
the algorithm selects a new database, and re-estimates 
its parameters. 

We now describe each of the components of the al- 
gorithm in more detail, using coiled coils as an example, 
although the algorithm can he applied to other protein 
motifs. 

Scoring. In our implementation, we use the PairCoil 
program described by Berger et al. [7] as our scoring 
procedure (see also section 2), although any good pre- 
diction algorithm with a low false positive rate can be 
used for scoring. The scoring procedure gives a residue 
score for each amino acid in a given sequence, as well as 
a sequence score, which is the maximum residue score 
in the sequence. 

\l’e us<’ t hih scoring procrtliire with prol~al~ilitirh for 
the singles and pair positions for the targ(,t nroti!’ es-- 
t,iniat,ecl using the original database of the base motif, 
ari(l the clat.ahasc biiilt by t.hc algorithiii iii the previoiis 
it,era.tiou. In each it.eratiou after t,he first, whc~u NX’ score 
a sequence WC check to see if it was itlentilict! in t he pie- 
vious iteration. lf it was, we remove t.his sequence from 
t,hr database and adjust the probabilities before scoring. 

Given good cst,imat,es for the prohahilibies for t,ht: 
singles and pair posit,ions for the motif, and reasonable 
assumptions about. depen(lencics in the mot.if, t,he Pair- 
coil scoring method which we use as a subroutine is 
rnatllr:,rratically just,ified [3]. 

Coruputing likelihoods. Once we have a sequence 
score, we assess it lay converting it into a likelihood that 
the sequence conta.ins the target motif. ln each itera- 
tion of the algorithm, we compute a function that takes 
a residue score and computes the likelihood that the 
residue is part of the target, motif. 

We compute this likelihood function in a manner de- 
scribed in [7]. In particular, every sequence in a large se- 
quence database is scored. (Ideally, this large sequence 
database is the PIR. However, in pract,ice, to save time, 
we use a sampled version of the PIR, which is l/25-th 
the size; the likelihood function calculated using this 
sampled PIR is a good approximation to the likelihood 
function calculated using the entire PlR.) The sampled 
PIR residue score histograms are nearly Gaussian dis- 
tributed with some extra probability mass added on the 
right-hand tail. This extra mass is attributed to residues 
in the target motif, since they are expected to score 
higher. In the case of the coiled coil motif, given the 
biological data currently available, it is estimated that 
between l/50 and l/30 of residues in the PIR are in a 
coiled coil. To fit a Gaussian to the histogram data, we 
calculate the mean so that the extra probability mass 
on the right side of the mean corresponds to between 
l/50 and l/30 of the total mass of the PIR. We then 
compute the standard deviation using only scores below 
that mean, where a Gaussian better fits the histogram 
data. The likelihood t,hat a residue wit,h a given score 
is a coiled coil is estimat,ed as the ratio of the extra 
histogram mass above the Ga.ussian at that score (cor- 
responding to data assumed to he coiled) to the total 
histogram mass at that score. A least square fit, line is 
then used to appr0ximat.e the likelihood function in the 
linear region from 10 to 90 percent. This line t,hen gives 
an approximation for the likelihoods corresponding t,o 
all scores. 

One feature of this method of computing likelihoods 
is that it does not allow too many residues to he cou- 
sidered as part of coiled coils. This helps keep the false 
positive rate of the algorithm low. 

Randomized selection of the new database. Once 
we have obtained the likelihood function for an iter- 
ation, we wish to use t,he likelihoods to build a new 
database of sequences presumed to fold into the tar- 
get motif. At the beginning of each it.eration, our new 
database cont,ains no sequences. Then for each sequence 
in the set, of test sequences, we do the following. First, 
we score each sequence and then convert its sequence 
score to a likelihood. Next,, we draw a number uni- 
formly at random from the interval [0, 11. If the number 
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drawn is less than or equal to the likelihood of the se- 
quence, then the sequence is added to the new database. 
All residues in this sequence that have scores equal to 
the sequence score or greater than the 50% likelihood 
score (which is the algorithm’s cutoff for a residue be- 
ing in a coiled coil) are added to the database. Once we 
have processed every sequence in our test set, then we 
have our new database of sequences presumed to fold 
into the target motif. 

In practice, we find that adding randomness sub- 
stantially improves the performance of our algorithm. 
In fact, if the procedure is written just to accept se- 
quences that have greater than 50% likelihood, then the 
algorithm fails to recognize many sequences which are 
known to contain 3-stranded coiled coils. On the other 
hand, if the procedure lowers the threshold value for 
acceptance, then its false posit,ive rate increases. 

Updating parameters. Once we have a new database 
of sequences that are thought to contain the target mo- 
tif, we need to update the parameters used by the al- 
gorithm for scoring. In our case, in each iteration of 
the algorithm, the scoring procedure requires updates 
of the estimates of probabilities for singles and pair po- 
sitions. The most straightforward way to update the 
probabilities is to use a maximum likelihood estimate 
from frequency counts from the new database. How- 
ever, this does not, work that well in practice. Instead, 
we update each probability by taking a weighted aver- 
age of the probability given by the base motif database 
and the probability given by the new database. 

Our way of updating probabilities can be described 
in a mathematical framework. The approach we give is 
mot.ivated by a Bayesian viewpoint [20]. In part,icular, 
we model the probabilities as the parameters of a Multi- 
nomial distribution, and we use the conjugate Dirichlet 
density to model the prior information we have about 
these probabilities [8]. In fact, the approach we give is 
not completely Bayesian, as we will use the seen data 
to pick the parameters of the prior distribution; this is 
sometimes called a Bayes/Non-Bayes compromise [2O]. 

Suppose we want to estimate the probabilities of var- 
ious amino acids in position a of a coiled coil. (We es- 
timate the probabilities for one position of a coiled coil 
independent of probabilities for other positions. Here, 
we focus on the case of updating singles probabilities; 
updating pair probabilities is analogous.) There are two 
types of data available to us. First, we have a frequency 
count vector Z = (zi,zz, . . ,220) where z1 is the num- 
ber of times amino acid i appears in position a the base 
motif database. In addition, in each iteration of the al- 
gorithm we have a new count vector y’ = (yi , yz, . . , yzo) 
where 9; is the number of times amino acid i appears in 
position a in the new database (i.e., the database con- 
sisting of the sequences we have selected in this iteration 
of the algorithm). It is assumed that the count vector 
y’is generated at random according to the Multinomial 
distribution with parameter p’= (pr, ~2,. . . , ~20). These 
parameters are the probabilities we wish to estimate. 

Our prior beliefs are modeled by the Dirichlet den- 
sity. The Dirichlet density is parameterized by a’ = 
(Lyl, CJz,. . . , ok), where cr, > 0 and oe = Co,. It has 
mean (w/00, (YZ/(YO,. . , ok/oo). The larger as is, the 
smaller the variance is. The Bayesian estimate for the 
probabilities pl ,pz, . ,p20 can be found by looking at 

the posterior distribution. It turns out that this pos- 
terior distribution is the Dirichlet distribution D(c? + 
f) [8, 201. That is, the new parameter of the distribu- 
tion is the vector sum of the original parameters and 
the observed data. Thus, a Bayesian estimate for prob- 
ability p, after seeing the data y’is: 

20 
0, +y, 

-9 
00 + yo 

where yo = 
c YI. 
,=I 

In picking the parameters of the prior distribution, 
we depart from the traditional Bayesian approach, and 
choose the parameters of the prior distribution after see- 
ing the data. In particular, since the base motif and 
the target motif are related, we want the base motif 
database to have a strong effect on the estimates for 
our probabilities, and thus we choose the variance of 
the prior distribution accordingly. 

The mean of the Dirichlet density is specified by the 
estimated probabilities of the base motif. The variance 
of the density is picked as follows. If 0 < X < 1 is the 
effect, or weight, that we want the base motif database 
to have, we let o, = z, &e, where zo = cfz, Z, 

and ys = cfz, y,. (Actually, we have to be careful in 
the case where 2, = 0.) It is easy to verify that our esti- 
mate for the probability p, is given by X2 + (I - X)g. 
Namely, our updated probability is a weighted average 
of the probability given by the base motif database and 
the probability given by the new database. 

In practice, we have found that our met,hod of up- 
dating probabilities has worked well. It is superior to 
a maximum likelihood approach which uses just the 
current iteration’s frequency counts. These estimates 
of the probabilities are especially problematic in the 
zero frequency case. Our method also performs bet- 
ter than an unweighted approach using both the initial 
frequency counts and the current iteration’s frequency 
counts. These estimates of the probabilities are largely 
dependent on the size of the original database, and the 
number of residues that are presumed at each itera- 
tion to be part of the target motif. In our test domain 
of coiled coils, we found that this method of updating 
probabilities missed more sequences that contain coiled 
coils than did our method for updating probabilities. 

Using Dirichlet mixture densities as priors to es- 
timate amino acid probabilities has been studied by 
Brown et al. [la]. Their approach uses as a prior the 
maximum likelihood estimate of a mixture Dirichlet den- 
sity, based on data previously obtained from multiple 
alignments of various sets of sequences. Their approach 
is a pure Bayesian approach, and their prior distribution 
has a smaller effect on the final probability estimates. 

Algorithm termination. The iteration process ter- 
minates when it stabilizes; that is, when the number 
of residues added from the previous iteration changes 
by less than 5%. Usually the procedure converges in 
around six iterations; otherwise, we terminate it after 
15 iterations. In practice, we found that the algorithm 
rarely had to to be terminated due to lack of conver- 
gence. 

In our implementation, the running time of the en- 
tire algorithm is linear in the total number of residues 
in all sequences which are given as input. The basic op- 
eration in each iteration is scoring every sequence using 

41 



the Pair-Coil algorithm. For each sequence, the Pair- 
Coil scoring program takes time linear in the number 
of residues. Since we have at most a fixed number of 
iterations, the entire algorithm is linear-time. 

Distinguishing the base and target motifs. After 
running LearnCoil, the “learned” target concept con- 
tains both 2- and 3-stranded coiled coils. The problem 
of distinguishing one set from the other remains. The 
MultiCoil program of Wolf, Kim, and Berger [unpub- 
lished results, 19961 is being developed for this purpose 
and in initial experiments performs well. 

4 Results 

We have implemented our algorithm in a C program 
called Learncoil. We test our program on the domain 
of 3-stranded coiled coils and subclasses of 2-stranded 
coiled coils. First we describe the databases we use to 
test the program, and then we follow by describing the 
program’s performance. 

4.1 The databases and test sequences 

Our original database of 2-stranded coiled coils consists 
of 58,217 amino acid residues which were gathered from 
sequences of myosin, tropomyosin, and intermediate fil- 
ament proteins [73. We also have separate databases 
containing sequences from each of these protein sub- 
classes individually. A synthetic peptide of tropomyosin 
is the only solved structure among these. 

We test LearnCoil on the 3-stranded coiled coils by 
starting the algorithm with the base database of all 
2-stranded coiled coils. We test LearnCoil on the 2- 
stranded coiled coils by starting the algorithm with a 
base database of one of the subfamilies of the 2-stranded 
coiled coils. 

The set of iteration test sequences for testing per- 
formance on 3-stranded coiled coils consists of the fol- 
lowing 5516 sequences: 286 known non-coiled coils from 
the non-redundant version of the PDB created in [7] (the 
PDB is the database of solved protein structures); 2% of 
the sequences in OWL (a large non-redundant compos- 
ite database, where no two sequences in the database are 
exactly the same and no two sequences show only “triv- 
ial” differences [lo]), with any obvious members of the 
PDB removed (2815 total); sequences in OWL whose 
names contain the strings actinin, alpha spectrin, dys- 
trophin, tail fiber, laminin, fibrinogen, env, spike, gly- 
coprotein, bacteriophage T4 wac, bacteriophage K3 fib- 
ritin, heat shock transcription, or macrophage scavenger 
receptor, as well as the 3-stranded coiled coil mutant for 
GCN4 (2415 total, of which many are thought to con- 
tain 3-stranded coiled coils, and the 46 sequences given 
below are known to contain them). 

The 3-stranded coiled coil set is comprised primarily 
of laminin and fibrinogen sequences, as well as influenza 
virus hemagluttinin, Moloney murine leukemia enve- 
lope protein, 2 heat shock transcription factors, bac- 
teriophage T4 and K3 wac proteins, the trimeric GCN4 
mutant, 2 macrophage scavenger receptors, and bacte- 
riophage T3 and T7 tail fibers. 

Our set of iteration test sequences for 2-stranded 
coiled coils includes: l/23 of the PIR (1553 total); the 

286 known non-coiled coils; and the two of the subfam- 
ities out of myosins, tropomyosins, and intermediate fil- 
aments. (For example, when we start with a database 
of intermediate filaments, our iteration test sequences 
include myosins and tropomyosins.) 

Note that most of the sequences in our 2- and 3- 
stranded coiled coil data sets do not have solved struc- 
tures. However, there is strong experimental support 
that they contain coiled coils, although often the bound- 
aries of the coiled coil regions are difficult to specify ex- 
actly. We do not know the three dimensional structure 
for most of the protein sequences in our iteration test 
sets (except for the sequences from the PDB and por- 
tions of the sequences making up the 2- and 3-stranded 
coiled coil data sets). 

4.2 Testing on 3-stranded coiled coils 

We test the algorithm on 3-stranded coiled coils in two 
ways: the “leave one out” test and the “leave half out” 
test. In both cases, LearnCoil improves recognition of 
3-stranded coiled coils starting with an initial database 
of P-stranded coiled coils. We measure Learncoil’s per- 
formance on the 286 non-coiled coil proteins, and an 
evaluation set consisting of 3-stranded coiled coil se- 
quences. We assume that a false negative prediction 
has occurred when a sequence in the 3-stranded coiled 
coil evaluation set receives a score with a corresponding 
likelihood less than 50%. We assume a false positive has 
occurred when a non-coiled coil protein scores at least 
50% likelihood. Since our algorithm is randomized, the 
final likelihoods are found by averaging LearnCoil out- 
puts over five runs. 

In the first “leave one out” scenario, the algorithm is 
run with all the 5516 iteration test sequences described 
in section 4.1. Once the algorithm terminates, each 
of the 46 sequences in the 3-stranded coiled coil set is 
scored with respect to parameters calculated from the 
new database in the final iteration minus the effects of 
this sequence. That is, since the 46 3-stranded coiled 
coil sequences are included in the iteration test set, if 
a sequence appears in the final database, before scor- 
ing this sequence, the sequence is removed to avoid the 
possibility of unfairly biasing the test. 

The weight of the original database (i.e., relative to 
the new database) was chosen empirically to be X = 0.1. 
This makes sense because 2- and 3-stranded coiled coils 
are sufficiently different; thus, it may require much more 
weight for the newly identified sequences to effectively 
broaden the new database to contain 3-stranded coiled 
coils. We also experimented with weights in the range 
0 5 X 5 0.5 but X = 0.1 gave the best results. 

Our algorithm LearnCoil positively identifies 43 out 
of 46 (93%) of the 3-stranded coiled coil sequences and 
makes no false positive predictions. In contrast, Pair- 
Coil positively identifies 31 out of 46 (67%) of the 3- 
stranded coiled coils and also makes no false positive 
predictions (see Table 1). Moreover, using the final 
databases that LearnCoil produced, we are able to rec- 
ognize all the sequences in the 2-stranded coiled coil 
database. Thus the final databases produced by the 
Lear&oil algorithm performs well on both 2- and 3- 
stranded coiled coils. 

In the second “leave half out” scenario, we split the 
3-stranded coiled coil sequence set in half in t,he fol- 
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Base Set Evaluation Performance Performance 
Set without LearnCoil with LearnCoil 

93, of seqs # of false % of seqs # of false 
positive seqs positive seqs 

2-str CCs 46 3-str CCs 67%) O/286 93% O/286 

Table 1: Learning 3-stranded coiled coils from &t,randed coiled coils using the leave one out criterion 

lowing manner. First, the 46 3-stranded coiled coil se- 
quences are divided into t,he following subgroups: o- 
fibrinogens, P-fibrinogens, y-fibrinogens, laminins, tail 
fibers, heat shocks, and all remaining prot,ein sequences. 
Next, each of these subgroups is randomly divided into 
t,wo parts, one for each half; this ensures that in the 
final split, each half is fairly representative of examples 
of the 3-st,randed coiled coil motif. 

We split the 3-stranded coiled coil sequences 3 times 
in the above manner. This then gives us six different 
iteration and evaluation sets. Each evaluation set con- 
sists of 23 3-stranded coiled coil sequences, and the cor- 
responding iteration test set consists of 5493 sequences 
(the original 5516 sequences, minus the 23 sequences 
in the evaluation set). We run LearnCoil on each of 
the six iteration test sets, and evaluate the algorithm 
by its performance on the corresponding evaluation sets 
(namely, those 3-stranded coiled coil sequences which 
are not included in the iteration test set). Note that, 
the set of sequences with solved structures that do not 
contain coiled coils are included in all iteration test sets, 
and are scored using the leave one out criterion. 

For each iteration test set, our algorithm is again run 
5 times with X = .l, and with final likelihoods averaged 
over the runs. Table 2 gives the performance of our al- 
gorithm on the different evaluation sets. On average, 
LearnCoil selects out 85% of the 3-stranded coiled coil 
sequences not originally in the set of sequences upon 
which it iterates. In contrast, PairCoil on average se- 
lects out 67% on the same sets of sequences. In all but 
one of the six experiments, the algorithm does not get 
any false positives from the set of solved structures. In 
the one scenario when it does get a false positive, the 
likelihood of all sequences in the corresponding evalu- 
ation set (Bl) t,hat score above 50% also score higher 
than this false positive. 

The average performance of LearnCoil on the 3- 
st,randed coiled coil sequences included in the iteration 
test set is 88%. (Individual performance data for each 
of the six experiments is not shown.) This average does 
not seem to be significantly higher than the algorithm’s 
average performance on the sequences in the evaluation 
set. Thus in comparing the results in Table 2 with the 
results in Table 1, it appears that the decreased per- 
formance on these runs with the splits is the result of 
fewer available 3-stranded coiled coil sequences to the 
algorithm, and not upon whether the evaluation crite- 
rion is the leave one out criterion or the leave half out 
criterion. 

4.3 Testing on subclasses of ‘L-stranded coiled coils 

Our results on subclasses of the 2-stranded coiled coil 
motif indicate that we are able to “learn” coiled coil re- 

gions in one family of proteins starting with an initial 
database consisting of coiled coils from another family 
of proteins. Our techniques improve non-iterative ap- 
proaches, such as the PairCoil program, which fail to 
identify many conjectured coiled coil residue positions 
when restricted to a database of only one protein family. 

We test LearnCoil on three different domains (Ta- 
ble 3): tropomyosins (TROPs) as a base set and myosins 
(MYOs) and intermediate filaments (IFS) as a target 
set; myosins as a base set and tropomyosins and inter- 
mediate filaments as a target set; intermediate filaments 
as a base set and myosins and tropomyosins as a target 
set. A different set of iteration test sequences is used 
for each of these tests; that is, the set that includes se- 
quences of the two proteins in the target set. For these 
experiments, we have residue data, and thus our perfor- 
mance measure is with respect to these. False negatives 
are coiled coil residues of sequences in the target set 
which do not have at least a 50% likelihood. False pos- 
itives are defined as in section 4.2. 

Here the weight of the original database was empiri- 
cally chosen to be X = 0.3. One possible explanation for 
this is since the subclasses of 2-stranded coiled coils have 
more similarities than differences, the program does not 
have to be so aggressive in picking up the target set. 
Moreover, the goal is a target set of 2-stranded coiled 
coils, and this is best achieved by weighting each of the 
3 types of proteins equally. We also experimented with 
weights of X = 0.1 and X = 0.5, and while their over- 
all performance was similar, they produced more false 
positives. 

First, we consider experiments with tropomyosins in 
the base set and myosins and intermediate filaments in 
the target set. LearnCoil positively identifies 99% of 
the myosin and intermediate filament residues in the 
2-stranded database and makes one false positive pre- 
diction. This is in contrast to PairCoil, which obtains 
a performance of 70.9%, with four false positive and two 
false negative predictions. 

Next we consider experiments with a base set of 
myosins and a target set of tropomyosins and interme- 
diate filaments. LearnCoil positively ident,ifies 99% of 
the tropomyosin and intermediate filament residues and 
makes one false positive prediction. This is in contrast 
to PairCoil, which obtains a performance of 88.8%, 
with two false positive and one false negative predic- 
tions. 

Lastly, we consider experiments with a base set of 
intermediate filaments and a target set of tropomyosins 
and myosins. LearnCoil positively identifies 99.4% of 
the tropomyosin and myosin residues and makes two 
false positive predictions. In contrast, PairCoil obtains 
a performance of 83.3%, with four false positive predic- 
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Table 2: Learning 3-stranded coiled coils from 2-stranded coiled coils using the leave half out criterion. The 3-stranded 
coiled coil sequences are split 3 times, giving us six different iteration and evaluation sets. The evaluation sets are 
Al, A2, Bl, B2, Cl and C2 (Al and A2 are a result of one split, etc.). 

tions. One possible explanation for more false positives 
here is that the intermediate filaments have a less ob- 
vious coiled-coil structure and there very well may be 
non-coiled coil residues in the database; consequently, 
starting with a table of solely intermediate filaments 
may select out non-coiled coils for the target database. 
In addition, it is speculated that some of the intermedi- 
ate filaments may be heterodimers, and thus quite dif- 
ferent from the myosins and tropomyosins (which are 
thought to be homodimers). 

For all the three above experiments, LearnCoil im- 
proves performance of PairCoil in identifying coiled coil 
residues, while also improving its false positive rate. 

We also tested LearnCoil with the NewCoils pro- 
gram [26] as the underlying scoring algorithm. For sub- 
classes of ‘L-stranded coiled coils, we find that Learn- 
Coil enhances the performance of NewCoils as well. 
It obtains a performance of 96.2% when tropomyosins 
are used as the base set, a performance of 95.3% when 
myosins are used, and a performance of 98.2% when in- 
termediate filaments are used. The program does not 
make any false positive predictions when run on these 
three test domains. In contrast, the non-iterative ver- 
sion of NewCoils has substantial overlap between the 
residue scores for coiled coils and non-coiled coils in all 
of the three test domains. 

4.4 New coiled-coil-like candidates 

The LearnCoil program has identified many new se- 
quences that we believe contain coiled-coil-like struc- 
tures. Table 4 lists some examples of “newly found” vi- 
ral proteins (i.e., proteins for which PairCoil indicates 
that no coiled coil is present, but LearnCoil indicates a 
coiled-coil-like structure is present). We believe that the 
proteins given in Table 4 either contain coiled coils or 
coiled-coil-like structures. Indeed, the MultiCoil distin- 
guisher program (see Distinguishing the base and target 
mot+) indicates that the 14-3-3 protein contains a 2- 
stranded coiled coil, but all others contain 3.st,randed 
coiled coils. 

In Table 4, the frst six proteins for which coiled coil 
regions are predicted are envelope glycoproteins of retro- 
viruses. Close analysis of these envelope glycoprotein se- 
quences (Rous sarcoma, Avian sarcoma, HTLV, equine 
infectious anemia virus, HIV and SIV) as well as other 

retrovirus envelope sequences has suggested that these 
proteins can be categorized in two structural groups, 
based on the number of coiled-coil-like regions found. 

The first group contains one coiled coil region, and 
includes Moloney murine leukemia virus envelope pro- 
tein (whose structure has been solved [17]) as well as 
most of the retrovirus envelope proteins. In the second 
group, there are two coiled-coil-like regions. These re- 
gions are thought to take part in a new coiled-coil-like 
structure which has been identified in recent biological 
work. This structure is believed to consist of a parallel, 
homotrimeric coiled coil encircled by three helices with 
a heptad-repeat pattern packed in an antiparallel forma- 
tion. It is thought to be in the envelope glycoproteins 
of both HIV and SIV [9, 251. 

Our program seems to be able to accurately predict 
this new coiled-coil-like structure. For example, it iden- 
tifies two coiled-coil-like regions in SIV. Independently, 
the biological investigation of SIV by Blacklow et al. 
experimentally predicts that these are the two regions 
that are part of the coiled-coil-like structure [9]. One 
of these regions (comprising the outer three helices) is 
predicted by the NewCoils program and is given a 26% 
likelihood by the PairCoil program. The other region 
(comprising the trimeric coiled coil) is only predicted by 
our LearnCoil program. This region corresponds to the 
N-terminal fragment in the paper of Blacklow et al. III 

fact, the region LearnCoil predicts and the region that 
Blacklow et al. find are almost identical: LearnCoil 
predicts a coiled-coil-like structure starting at residue 
553 and ending at residue 601, whereas Blacklow et al. 
start the region at residue 552 and end it at residue 604. 

Moreover, there is biological evidence that several 
other of the sequences in Table 4 contain coiled-coil-like 
structures. Our predictions were made independently of 
these results. For instance, recently, the crystal struc- 
ture of two 14-3-3 proteins have been solved [24, 311. 
The paper of Liu et al. studies the zeta transform of the 
14-3-3 structure in E. coli, and they report a 2-stranded 
anti-parallel coiled coil structure. On the other hand, 
the paper of Xiao et, al. studies the human T-cell r 
dimer, and they report helical bundles. Although there 
is some uncertainty here. it is likely that the 14-3-3 pro- 
tein we have identified contains a coiled-coil-like struc- 
ture, if not a coiled coil itself. 

The proteins reportecl in Table 4 are compared t,o 
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Base Set Evaluation Performance Performance 
Set without LearnCoil with LearnCoil 

% of # of false % of # of false 
residues positive seqs residues positive seqs 

TROPs MYOs + IFS 71% 41286 99% l/286 

MYOs TROPs + IFS 89% 21286 99% l/286 

IFS MYOs + TROPs 83%~ 41286 99% 21286 

Table 3: Learning 2-stranded coiled coils from a restrict,ed set, 

PIR Name 

Rous sarcoma virus, env 
Avian sarcoma virus, env 
human ‘T-cell lymphotropic virus - type I, env 
equine infectious anemia virus, env 
HIV, env 
SIV, env 
fruit fly 14-3-3 protein 
human T-cell surface glycoprotein CD4 precursor 
mouse hepatitis virus E2 glycoprotein precursor 
human rotavirus A glycoprotein NCVP5 
human respiratory syncytiai virus fusion glycoprotein 

LearnCoil 
Likelihood 

>90% 
>90% 
>90% 
>90% 
>90% 
>90% 

52% 
90% 

>90% 
>90% 
>90% 

Table 4: Newly discovered coiled-coil-like candidates 

the PairCoil program. The NewCoils program of Lu- 
pas et al. finds some of these proteins; however, in gen- 
eral, t,his program finds a significant number of false 
positives. The NewCoils program identifies some of the 
same coiled-coil-like regions in mouse hepatitis virus gly- 
coprotein. human rotavirus glycoprotein. human respi- 
ratory syncytial virus glycoprotein, HIV envelope pro- 
tein and SIV envelope protein. The 14-3-3 protein, t,he 
human T-cell lymphotropic virus envelope protein, the 
human T-cell surface glycoprotein CD4 precursor, Rous 
sarcoma virus envelope prot,ein, Avian sarcoma virus 
envelope protein, and equine infectious anemia virus 
envelope prot,ein are found only using our LearnCoil 
program. (NewCoils finds a. coiled coil region in equine 
infectious anemia virus envelope protein, but it is dif- 
ferent from the one LearnCoil finds.) As mentioned 
above, there is biological evidence that, at least some of 
the proteins that only LearnCoil finds (e.g., the 14-3- 
3 protein and the retrovirus envelope proteins) contain 
coiled-coil-like structures. 

5 Conclusions 

In t,his paper, we have shown that an iterative algo- 
rithm that uses randomness and statistical techniques 
can substantially enhance existing methods for prot,ein 
motif recognition. We have designed a program Learn- 
Coil and demonstrate its ability to “learn” the 2. and 
3-stranded coiled coil motif. 

There is evidence that. our program may have identi- 
fied a new coded-coil-like motif that occurs In the enve- 
lope glycoprotein of many retroviruses, and a compan- 
ion paper on this topic is forthcoming [5]. We are also 

PairCoil 
Likelihood 

<lO% 
<lO% 
<IO% 
<IO% 
<JO% 

26% 
<lO% 
<lO% 

23% 
<lO% 
<lO% 

exploring an application of our algorithm to bacterial 
signaling proteins [4]. It is our hope that biologists will 
use this program to help ident,ify other new coiled-coil- 
like structures. 

In the future we plan to apply the LearnCoil pro- 
gram to motifs other than those that have coiled-coil- 
like properties. Limited data is a problem for many 
protein structure prediction problems. There are newly 
discovered protein motifs for which biologists cannot yet 
predict, and more importantly, do not yet even know 
the structural features that characterize the motifs. We 
hope to extend the techniques developed here to aid in 
the determination of crucial structural features that give 
rise to these motifs, as well as to learn how to predict 
which proteins exhibit this motif. 
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