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Abstract. In his last published paper, Solvable and Unsolvable Problems, printed in 1954 in the popular
journal Science News, Alan Turing presented several elegant puzzles aiming at explaining and popularizing
problems for which there are algorithms for solutions — the solvable — as well as some for which no such
algorithmic solution exists the unsolvable. This paper could be seen as a continuation of Turings aim
to explain and popularize through puzzles, this time using a set of computational problems of various
computational difficulties. Similar to Turings paper, where all his puzzles are unified as substitution puzzles,
our set of puzzles offers instances of a unified approach based on urn games. Our (m, nl, n2) games have
urns of two types: set urns and linear urns; the urns contain balls of m colors; in a move, a number nl of
balls are extracted and a number n2 of balls are returned to the urn; the solitary player performs moves, one
after another, based on the rules of the game until no rule can be applied. Our urn games include Turings
substitutions puzzles, but defined with different goals. The class of computational problems obtained by
varying the urn game parameters (m, nl, n2) turns out to form a hierarchy of complete problems, one for
each of the complexity classes NL, P, NP, PSPACE, EXPSPACE, and the unsolvable. Dijkstras game is a
(2,2,1) urn game.

The urn games are generalizations of a silly game E.W. Dijkstra presented in his paper Why correctness
must be a mathematical concern [Inaugural Lecture for the Chaire Internationale dInformatique at the
Universite de Liege, Belgium, 1979 (EWD?720)]. The generalizations are inspired by discussions I had with
Professor Dijkstra in the wake of my somewhat critical comments of his game. [See my articles Criticizing
Professor Dijkstra Considered Harmless and the followup, When Professor Dijkstra Slapped Me in the Quest
for Beautiful Code http://www.cs.brown.edu/ sorin/non-tech-writing.htm.]

Dijkstra’s silly game is shown to have a certain incompleteness property. This incompleteness relates
to the apparent inseperability of two problems: (a) demonstrate how to predict the final outcome, and (b)
demonstrate that the final outcome is completely predictable. It turns out that predictability is equivalent
to associativity and to the existence of logical invariants for correctness proofs.

We analyse the game and some natural variants inspired by the quest for understanding its incomplete-
ness. It will turn out that a complementary problem, the Unpredictability of a given instance, offers a pure
combinatorial, (i.e., machine-independent) introduction of computational complexity classes. The game and
its variants are disguises of decision problems of generic computational difficulty: Directed graph accessi-
bility, Context-free grammar membership, Satisfiability of propositional Boolean formulas, Context-sensitive
grammar membership, Uniform word problem for commutative semigroups, Recursive-enumerable grammar
membership. Indeed, the unpredictability problem for the game and its natural generalizations, turns out
to provide us with a hierarchy of complete problem for the complexity classes NL, P, NP, PSPACE,
EXPSPACE. The last mentioned disguise brings the complexity status of the problem to unsolvable.

1 A beautiful problem of Dijkstra that fails to be a well-defined puzzle
Let us give the author’s description of the problem [2]

Consider the following silly game to be played by a single person with an urn and as many white balls
and black balls as he needs. To begin with an arbitrary positive number of balls is put into the urn, and as
long as the urn contains two or more balls, the player repeats the following move: he shakes the urn and,
without looking, he takes two balls from the urn; if those two balls have the same color he throws one black
ball back into the urn, otherwise he returns one white ball into the urn. Because each move decreases the



total number of balls in the urn by 1, the game is guaranteed to terminate after a finite number of moves,
and it is not difficult to see that the game ends with exactly 1 ball in the urn. The question is: “What can
we say about the color of that final ball when we are given the initial contents of the urn?”

I have read for the first time the problem in D. Gries’ monograph The Science of Programming. By following
the advise of the book, I have spent 10 minutes, trying to solve the problem, before reading the solution.
But neither did a solution come nor did I really start to solve it. I spent these 10 minutes trying to answer
a different question: Was the problem question well-defined? In fact, I tried to convince myself that having
started with an initial content of the urn, the color of the final ball would be unique, i.e., would not depend
on the order in which I have picked up the balls. It was clear that there were many ways to follow, but it
was unclear whether all the roads lead to Rome!

The problem question seems to indicate that the color of the final ball is predictable when the initial content
of the urn is given.

Then puzzled by the puzzle I read the solution.

“Looking at the three single moves possible,

1. co— e
2. e 0 >0
3. o0 — @

we observe that the last two leave the number of white balls in the urn unchanged, while the first move reduces
the number of white balls in the urn by 2. In other words, each move leaves the so-called parity of the number
of white balls in the urn unchanged: an even number of white balls in the urn remains even, and an odd num-
ber of white balls in the urn remains odd. In short: if the initial number of white balls is even, the final ball is
black, and if the initial number of the white balls is odd, the final ball is white. And that answers the question!

Note that this single argument settles the question for all initial contents of the urn, and per initial con-
tents for all of the perhaps many possible games.”

I realized that the invariant pointed out by the solution assured the predictability property of the color of
the final ball. T wondered whether in order to show that the problem is well-defined we have to solve it!
This paper is about this incompleteness property of the problem of Dijkstra. The incompleteness relates
to the apparent inseperability of two problems: (a) demonstrate how to predict the final outcome, and (b)
demonstrate that the final outcome is completely predictable.

Even after seeing the solution, I couldn’t explain in a crystal clear way why the final color was unique;
available seems to be only an aposteriori proof. After a little bit of search I discovered the reason of my
previous feelings. Consider the following bad game given by the rules:

1. oo — e
2. co — e
3. e@ — 0

for which the final outcome is unpredictable for some initial contents of the urn. Indeed, consider the urn
having the following composition {e o e}. Then the following two plays of the bad game end up in balls of
different colors:



{.O.} _>rul63 {OO} _>rulel {.}
{.O.} _>7"ul62 {..} _>rule3 {o}

What is the property that distinguishes good games from bad games?

2 Predictable Games
Let us denote e by 0, o by 1 and let f be a function f : {0,1} x {0,1} — {0,1} function. Let Ball={0,1}.

Definition 1 f-terms and their values, are defined inductively.

o If bis in Ball then b is an f-term; its value is val(b)=b.

o Ifty,ty are f-terms, then so is f(t1,ta); the value of t=f(t1,t2) is

val(t) = f(val(ty),val(ts)).

Let S be a sequence of balls of positive size; denote its size by |S|. Our move will be different this time: we
will pick two consecutive f-terms t; and to, remove them and put in their place the f-term f(¢1,t2).

Definition 2 Let us define a sequence f-game as follows: Given an initial sequence S of f-terms of positive
size, the player repeats the following move as long as the sequence has size two or more: he takes two con-
secutive f-terms from the current sequence, say ti,ts and returns in their place in the sequence the f-term
f(t1,t2). Denote the move (t1,t2) on S by S — S’, where S1,S2 are sequences such that S = S1t1t2S2 and
S = 81f(t1,t2)Ss. Let —% be the reflexive transitive closure of —y. A play of the sequence f-game on S is
given by

S—=5t
The play ends up with a sequence having only one term t, called the final f-term of the play.

Definition 3 The sequence f-game is predictable on S if for every sequences Si1,Ss, whenever

e S —>} Sl,S —)jc 527i =1, 2and
o [S1]=[%[=1
it follows that val(S1) = val(Ss).

The sequence f-game is predictable if for every sequence S it is predictable on S.
Theorem 1 For every function f, the sequence f-game is predictable if f is associative.

Proof. Let us consider a play S —7% ¢ of the f-game on an initial sequence of balls S. If we ignore the
commas, parentheses, and the ‘f’ symbols in the final term ¢, what is left is the initial sequence of balls.
Call this sequence the ball sequence of the f-term.

As a corollary, different initial sequences will give rise to plays having (syntactically) different final f-terms
(which may, or may not, be semantically equivalent, i.e., terms with the identical value). Consider now, for
a fixed S, all the plays on S having the same final term ¢.

The final term of the play ¢ is the same for all the plays that have the same set of moves made at identical
positions in the corresponding sequences, but performed in possible different order. Therefore an f-term
is an equivalence class for plays that differ in the arbitrary choice imposed on independent moves. This
abstraction clears the way of understanding predictability.

Indeed, a play on sequence S = b1bs...b, provides with a final term ¢, which is an arrangement of parentheses



on S, giving rise to an expression defining and element of Ball. Conversely, any arrangement of parentheses
in the sequence S can be converted into an f-term which is a final term for a class of plays.

Therefore we can conclude that predictability on S is exactly the requirement that all the f-term having
ball sequence S must have identical value.

This means exactly that f is associative on S. Now predictability means associativity on O

Let us remark that predictability is also equivalent to another interesting property.

Theorem 2 The following are equivalent.

1. The sequences f-game is predictable.

2. There exists an Invariant for the f-game.

Proof. Let us say that predicate ¢ over the set of sequences is an Invariant for an f-game if the following
holds: whenever S |= ¢ and S — S’ follows that S’ |= ¢.

Let us consider a directed graph G = (V, E) that has the set of ball sequences as vertex set V and — f as
edges. It is easy to see that the f-game is predictable if the graph has exactly two connected components:
one containing the vertex 0 and the other one containing the vertex 1. Indeed, predictability means that
from every sequence S we can reach exactly one sequence of size one. Let V| be the set of vertices connected
by a directed path to 0. Similarly for V3. The {Vp, V1 } is a partition of the set of ball sequences exactly when
the game is predictable. Describing one of these two sets, say Vj by a predicate ¢ gives us an Invariant for
the game. Indeed, in this case we have that S = ¢g and S — fS* implies S* = ¢p.

Among the 16 binary boolean functions there are only 6 that give rise to predictable games, i.e., they are
associative. They are

1. fi(z,y) =0, Invariant ¢g: All sequences

2. fo(z,y) =1, Invariant ¢g: No sequence

3. f3(z,y) = Ty V a2y, Invariant ¢o: The number of white balls is even
4. fy(z,y) = zy V Ty, Invariant ¢g: The number of black balls is even
5. fs(x,y) = zy, Invariant ¢o: One or more black balls

6. fo(x,y) =z Vy, Invariant ¢o: One or more white balls

Let us consider now the set f-games, the generalization of the game of Dijkstra. We return to urns, that
is, the balls initially are given as a set. In order to have f-games we need commutative functions f.
The analog of the f — term is now called commutative f-term which is a class of f-terms.

Definition 4 Commutative f-terms and their values are defined inductively.

o ] fbisinBallthenbisacommutative f — term;itsvalueisval(b) = b.
o I ftq,taarecommutative f —terms, thensoisf{ty,ta}; thevalueoft = f{t1,t2}isval(t) = f(val(t1),val(ts)).

Let U be an urn having a positive number of balls; denote its size by |U|. The move of the game is the
following: we will pick two commutative f-terms ¢; and 5, remove them and put in their place the f-term

At t2}



Definition 5 Let us define an urn f-game as follows: Given an initial urn U of commutative f-terms of positive
size, the player repeats the following move as long as the urn has size two or more: he takes two commutative
f-terms from the current urn, say ¢1,t2 and returns in the urn the commutative f-term f{t1,%2}. Denote the
move {t1,t2} on U by U — fU’, where U’ = (U — {t1,t2} U{f{t1,t2}}. Let — ¢ be the reflexive transitive
closure of —¢. A play of the urn f-game on U is given by

U —* f{t}

The play ends up with an urn having only one commutative f-term t, called the final commutative f-term
of the play.

Definition 6 The urn f-game is predictable on U if for every urns Uy, Us, whenever

o« U3 Up,U—% Usyi=1,2 and
o [Uy = {t:1},Uz = {t2}

it follows that val(ty )=val(ts).
The urn f-game is predictable if for every urn U it is predictable on U.

Theorem 3 For every function f, the following are equivalent:

1. The urn f-game is predictable.
2. The function f is associative.

3. There exists an Invariant for the urn f-game.

Let us return to the original game. Dijkstra’s ur f-game uses the commutative function fs. fsis the sum
modulo 2 of the two arguments. Its associativity is responsible for the fact that the game is predictable.

3 The Complexity of Unpredictability

We are going to analyze the difficulty of prediction on a given urn or sequence. Moreover, the reductions of
the game to different problems of generic computational difficulty suggest slight generalizations of the game
that complete the complexity picture. If we play the game by taking out m balls and returning n balls back,
i.e., using n functions o farity m, then we call this game the (m, n)-game. Let (2,2) stand for {(2,1),(2,2)}
and (2,2) stand for {(1,2),(2,2),(2,1)}. In a similar way we can define the (2,2)-game and the (2,2)-game.
Let us remark that there may be infinite plays in some generalized versions of the games.

THE UNPREDICTABILITY PROBLEM

Given: A set of functions described by a, and a sequence S (urn U).
Question: Does there exist two plays of the a-game ending up in different balls?

3.1 The Complexity of Unpredictability for Games on Sequences

The sequence f-games, (which are sequence (2,1)-games in this new terminology) are reminiscent to Chom-
sky’s context-free grammars and the parsing problem for them. Let G = (Vy, Vi, zg, F) be a context-free
grammar in Chomsky normal-form. We are going to present three reductions of the Membership problem for
grammars to the Unpredictability problem for the sequence a-games. We give the reduction of the Member-
ship problem for context-free grammars to the Unpredictability problem for the sequence (2,1)-game. The



other two reductions are similar.

We can associate a function f to the grammar. f: K x K — K be defined as follows.
Let K =VnUVrU{f,g,G} and

Lemma 1 Let w € (Vy UVy)T. The f~game played on the sequence fwg is unpredictable if w € L(G).

Theorem 4

1. The unpredictability problem for the sequence (2,1)-game is complete for P.
2. The unpredictability problem for the sequence (2,2)-game is complete for PSPACE.
3. The unpredictability problem for the sequence (2,2)-game is unsolvable.

Proof

1. The membership problem for context-free grammars is complete for P [3].
2. The membership problem for context-sensitive grammars is complete for PSPACE [3].
3. The membership problem for recursive-enumerable grammars is unsolvable [3].

3.2 The Complexity of Unpredictability for Games on Sets
First let us consider the (2,1)-games. The following problem will be used in the reduction.
DIRECTED GRAPH ACCESSIBILITY PROBLEM (GAP)

Given: A directed graph G = ({1,2,...,n}, 4).
Question: Does there exist a path from vertex 1 to vertex n?

Theorem 5 The unpredictability problem for the urn (2,1)-games is NL-hard.

Proof We are going to reduce the GAP to the unpredictability problem for the urn (2,1)-games. Let
g—({1,2,...,n}, A) be an instance of GAP. Take K = {1,...,n,1,...,7, b,in,out, g} and define f : K x K — K



Consider now the initial urn U to be
U=1{1,..,n,b,in,out}.
The possible final balls are the g(good) and b(bad). While b is always a final ball, we have that
there is a play having ¢ as a final ball if G has a path from vertex 1 to vertex n.

It is easy to see that the reduction can be done in log space.

We are now considering the complexity of unpredictability for the urn {(2,1),(2,2)}-game. The decision
problem we use in order to classify its complexity is the following.

SATISFIABILITY OF PROPOSITIONAL BOOLEAN FORMULAS (SAT)

Given: A set of variables U and ¢ a Boolean formula over U.
Question: Does there exist a truth statement to the variables from U which satisfies ¢?
Theorem 6 The unpredictability problem for the urn {(2,1),(2,2)}-game is NP-complete.

Proof Without loss of generality we can consider ¢ in conjunctive normal form. We can view now ¢ as being
a set of clauses C that should be simultaneously satisfied. Again without loss of generality, each clause may
be restricted to have exactly 3 literals.

Let (U,C) be an instance of SAT. We are going to associate an instance of our game as follows. Let
U? = {x*|x € U},z = 0,1. For each clause ¢ € C,c = y1 V ya V y3, defined = [y1 V y2 V y3],cf = [1],) =
[y2 \ yB]’ 0%2 - [1]3 0(1)2 - [y?)]' Let ¢ = {0‘7 6%7 C(l)v 01127 0(1)2} and

K=UuU%0U'0U{0,1,b,9,G,[0], 1], } U (Ueecs)-
We now define the function
i KxK—=(KxK)UK
as follows.
1. f(z,2) =2%2€{0,1}
2. f(z%,2) ={z*,2*},z € 0,1}

3. f(lya Vy2 Vysl,z%) =a. If y3 = x and z =1 then a = [y V y3]; the other cases are similar
4. [ya Vys],z%) = a. If yo& and z = 0 then a = [1]; the other cases are similar

5. f(lys],z*) = a. If y3 = 2 and z = 1 then a = [1]; the other cases are similar

6. f([z1],[22]) = [71 * 22], 21, 22 € {0,1}

7. f(1],9) =G

8. f(G,2) =G,z €{0,1}

9. f(p,q) = b, otherwise

Now we take as an initial set of balls K = U U{0,...,0,1,...,1, } U (U.cce) U {g}. Let us analyze the game.
By our construction, the final ball can be b, meaning badway and G meaning there exists a truth assignment
making C true. While b is always a final ball of a play, G will be the final ball of a play if C' is satisfiable.
Let us explain how the reduction works.

e By 1 the variables from U may receive truth values z*.



e Using 2 copies of the balls created in 1 are provided in sufficient quantity, that is, for every occurrence
of z in C, a corresponding x* is available.

e Rules 3,4 and 5 simulate the assignment in the first, second and third position in the clause.
e The conjunction of the Boolean values of the clauses is realized by 6.

e If the result obtained in the previous step is [1] then rule 7 provides the ball G which remains alone
after the elimination, by 8, of all the remaining 1s and 0s. Note that G can eliminate only 1s and Os;
therefore at this moment the entire C' should be evaluated.

e Any other move provides as result the ball b which once present cannot be eliminated.

It is easy to see that the problem is in NP and the reduction can be done in log space.

Word problems can also be defined using Dijkstra-like games.

Let us define the uniform word problem for commutative semigroups [1]. A semigroup presentation S is
given by a set of equations of the form a; = b;,1 < i < n, where a;, b;, are words over an alphabet V. A
presentation S for a commutative semigroup is a set of equations with the property that for every x,y € V
we have in S the equation zy = yz. We define a — b if ((a = ca;d,b = cb;d) or (a = ¢b;d,b = ca;d)) and
a; = b; is an equation of the semigroup presentation. Let —* be the reflexive transitive closure of — Put
a=bif a =" b.

The uniform word problem for commutative semigroups is the following:

Given: A semigroup presentation S and words a, b.

Question: Is a = b in 57

Cardoza, Liptom and Meyer [1] showed that this problem is complete for EXPTIME.

Theorem 7 The unpredictability problem for the urn [2,2]-game with reversible moves is EXPTIME-
complete. (Reversible games are games in which each move has its reverse move also legal.

Proof First of all, without loss of generality we can reduce the problem to [2,2]-games by considering the
semigroup presentation as a recursive-enumerable commutative grammar, and reducing it to normal form [3].

Now to obtain the result we can just simulate the equations of the semigroup presentation with rules in the
game. We can start with an urn containing a. If b is reached after a sequence of moves, a special final ball is
produced. Any wrong attempt generates a bad final ball. The details are similar to that of the previous proof.
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