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Abstract

This paper studies the phenomenon of early hiring in entry-level labor markets a¤ected
by social networks. We o¤er a model in which information is revealed over time. At �rst,
workers have noisy information about their own ability. The early information is �soft�
and non-veri�able, and workers can convey the information credibly only to �rms that are
connected to them. Later on, �hard�accurate veri�able information becomes available.
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1 Introduction

The timing of transactions is an important part of a market�s activity. In entry-level labor

markets, such as the market for judicial clerks or for medical interns, hiring a worker before

su¢ cient information is revealed on her quality can lead to ine¢ cient placement. Nevertheless,

law clerks in the US are often hired by judges as early as the fall of their �rst year in law school,

and medical interns were in some years hired as early as two years prior to their graduation.

[41] documents several markets that exhibited a process of unraveling towards increasingly

earlier contracting dates when market participants repeatedly �jump the gun�. Unraveling is

found to a¤ect the outcomes of markets with respect to both distribution and welfare.1 Recently,

[33] documents that workers�mobility decreased during the unraveling in the gastroenterology

fellowships market that was triggered by the collapse of the central match. The observation

that early hiring is �more local�than late hiring suggests that locality is not merely driven by

the preferences of the workers to stay in the location of their training institutions, but rather

that there is an inherent di¤erence in the way hiring is conducted in di¤erent stages of the

workers�training.

The local nature of the hiring process is not surprising. Sociologists and economists have

long recognized that many workers �nd their jobs through friends and relatives.2 It is only

natural that social networks a¤ect an inherently connection-based phenomenon such as early

hiring. Nevertheless, none of the earlier models of unraveling accounted for the underlying

topology of markets that motivate the study of unraveling, whether it is based on geography

or on personal connections.3

In this paper, we propose a model in which some �rms and workers are connected - e.g., via

personal connections of workers�mentors. Our model consists of two stages in which workers

are in training institutions and reveal information on their own ability over time. In the early

stage, workers receive a noisy signal about their own ability. The early information is �soft�

and non-veri�able. Thus, workers can convey the information credibly only to �rms that are

connected to them. This would potentially be done via workers�mentors who convey their

impressions of the workers to �rms in which they have contacts. At the second stage, �hard�

1For direct evidence, see [16,34,35].
2See also [7,10,11,19,30].
3For previous theoretical work on unraveling see also [13,21,28,29,37,43].
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veri�able (and accurate) information is revealed to the workers and can be credibly transmitted

to all �rms. Firms that use their connections (and hire promising candidates early) dilute the

pool of high quality workers in the second stage. The externality imposed on other �rms triggers

a process of unraveling towards more and more �rms using their connections and hiring early.

We model the pattern of connections between workers and �rms as a two-sided (bipartite)

network. A connection links a worker with a �rm to which she is able to convey private

information credibly at an early stage of her training. Two-sided networks are especially suitable

for describing market interactions in which the roles of the di¤erent sides are distinct (e.g.

employers vs. potential employees). By studying the e¤ect of changes to the network structure

on unraveling we provide a rigorous analysis of changes in information asymmetries in the

market and their impact on unraveling. We �nd that di¤erences in the patterns of connections

can account for di¤erences in market outcomes, including unraveling. In our comparative

statics, we focus on two types of changes to the network structure: [1] changes that correspond to

adding connections to or deleting connections from the network; and [2] changes that correspond

to changing the distribution of a �xed number of connections across workers and �rms.

There are several ways to add links to a network. One way is to increase the span of the net-

work - i.e., increase the number of workers and �rms that have at least one connection. Another

way is to increase the network�s density - i.e., increase the number of connections of workers

and �rms that have at least one connection (without changing the network�s span). We �nd

that increasing the network�s density has a non monotonic e¤ect on unraveling. In particular,

if a network is su¢ ciently dense then any increase in density leads to lesser unraveling. An

immediate implication is that a complete market in an early stage of the workers�training does

not generate more unraveling than a networked market. Increasing the span of the network

always generates greater unraveling.

We further characterize the e¤ects of redistributing connections across workers and �rms. If

the distribution of the number of connections across �rms is more polarized, unraveling is greater

(a distribution is more polarized if there is higher density at the tails of the distribution). The

opposite is true for the case that the distribution of the number of connections across workers

is more polarized.

We are also interested in answering the following questions. What is the scope of market

design in this networked environment? Can a better design of the post-graduation market
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prevent unraveling? Consistent with much of the evidence from the market design literature,

we show that improving the underlying mechanism for matching workers and �rms in labor

markets (either by introducing a centralized match or by modifying the market rules) leads to

lesser unraveling. To this end, we o¤er a simple parameterization of the e¢ ciency of a matching

market in our setup. We prove that in large markets in which high productivity workers are

scarce, our parameterization is supported by a family of matching procedures that follow from

activity rules in centralized and decentralized markets. In particular, this family of matching

procedures incorporates most procedures that are studied in the market design literature (e.g.,

deferred acceptance, random dictator, top trading cycles, etc.).4

This paper is related to the literature on networks in economics. [10,11] study models of

job search via personal connections and derive implications for inequality and unemployment.

More broadly, there is a growing related literature on network games (e.g. [6,8]). In network

games each player cares only about the actions taken by her neighbors. [18] suggests that in

network games the analysis is simpli�ed if players are assumed to hold incomplete knowledge

of the network structure. This simpli�cation cannot be directly applied to our setup because

a �rm cares not only about the actions taken by its neighbors, but also about the aggregate

outcome in the market, which depends on the actions of all of the �rms and workers in the

market as well as on the entire network structure. Nevertheless, we show that if there are

many workers and many �rms and if the network is formed with a su¢ ciently salient random

component, the assumption that workers and �rms have incomplete knowledge of the network

structure simpli�es the analysis signi�cantly. This is possible due to recent graph theoretic

results by [15] who study repeated games in large two-sided networks.

The large networks approach leads to an analysis that has the �avor of a mean-�eld approx-

imation that is often assumed to approximate discrete and stochastic processes by a continuous

and deterministic process (see [22] for an example used in the analysis of network formation). In

particular, we provide an approximation for the number of workers hired early via the network.

However, because we are interested in equilibrium behavior, we take a more explicit approach

that provides bounds on the quality of the approximation and allows us to derive the �rms�

and workers�best response correspondences.

Finally, our model is di¤erent both in approach and in predictions from earlier models

4We discuss the connection with known matching algorithms in section 8.1.
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of unraveling. In particular, previous contributions focus on the heterogeneity of �rms and

candidates with respect to quality [28,29] and preferences [21], as well as on the size of the

applicant pool [28]. We share with previous models the insurance element driving the unraveling

process.

In the following section we motivate our analysis by reviewing evidence on patterns of

unraveling in several entry-level labor markets. In sections 3 and 4 we present the model and

derive the best response correspondences for workers and �rms. In section 5 we characterize

the structure of the equilibria in our model and de�ne a notion of equilibrium stability that

captures the dynamic nature of unraveling. In section 6 we derive comparative statics on

unraveling with respect to the network structure and the matching procedure, and in section

7 we discuss the impact of unraveling on market outcomes and consider policy implications.

Section 9 provides a discussion of important elements of the model including the robustness of

our modeling assumptions, and section 10 o¤ers concluding remarks.

2 Unraveling: prevalence and patterns

In this section we review evidence from di¤erent markets that exhibited unraveling. Much of

the evidence is anecdotal. Nonetheless, it sheds light on the process of unraveling. Since we are

interested in the determinants of unraveling, we also provide evidence from matching markets

that did not exhibit unraveling.

Gastroenterology fellowships. Gastroenterology is a subspecialty of internal medicine.

A typical gastroenterology fellow will have previously been employed for three years following

medical school as a resident in internal medicine and then started a gastroenterology fellowship.

The entry-level market for American gastroenterology fellowships was organized by a centralized

clearinghouse from 1986 to 1996. Before, and after (until 2006), it has been conducted via a

decentralized market in which appointment dates unraveled to well over a year before the

beginning of employment. During those years, unraveling was wide spread. On the other hand,

from 1986 until 1996, nearly all positions were �lled through the match. This points to the

e¤ectiveness of a centralized clearinghouse in preventing unraveling. However, a centralized

clearinghouse is not guaranteed to prevent unraveling. For example, in 1999, before the match

was formally abolished, only 14 out of more than 300 positions participated in the match. [35]

5



suggests that simultaneous shifts in demand and supply shifted the expectations on both sides

of the market and moved the system to an equilibrium with a high level of unraveling. This

points to the possibility of coexistence of multiple equilibria, and suggests that coordination is

important.

The special circumstances in the gastroenterology fellowships market provide additional

insights with respect to mobility and wages. The insights with respect to wages are stark: in

the gastroenterology fellowships market, [35] �nds no e¤ect of unraveling on wages.

Mobility corresponds to the tendency of workers to move between di¤erent geographical

regions; low mobility characterizes fragmented markets. [33] �nds that both before and after the

years in which the centralized clearinghouse was used, gastroenterologists were less mobile and

more likely to be employed by the hospital in which they were internal medicine residents than

when the clearinghouse was in use. The same is true at the city and state level. We interpret

the locality of early hiring to suggest that social networks are more active at early stages,

when information on candidates is hard to come by. We also infer that the network structure is

correlated with institutional a¢ liation, i.e., there are ties between gastroenterology departments

and internal medicine departments at the same hospital. Finally, in the process of reinstating

the gastroenterology fellowships match, market designers encountered resistance from several

mid-tier gastroenterology departments that share hospitals with higher-tier internal medicine

departments. This resistance suggests a belief that they are better o¤ in an unraveling market.

This also reinforces our conjecture that networks of connections play a role in the unraveling

process.

Judicial clerks. Federal judicial clerkships represent an important point of entry to many

of the most sought-after positions in the legal profession. Every year top students from elite law

schools compete for positions with judges who can help them to land Supreme Court clerkships,

plum teaching jobs, and competitive law �rm positions. At the same time, federal judges depend

heavily on their law clerks to aid them with their workload. Judicial clerks�wages and bene�ts

are determined by federal law.

The unraveling in the market for judicial clerkships is a long outstanding issue and has been

a source of disputes in the judicial system (see [3,4,26]). Despite the fact that early hiring is

wide spread, in every year there is a substantial number of judges who do not attempt to hire
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early. Moreover, hiring is concentrated around a handful of top law schools (namely Chicago,

Harvard, Michigan, Stanford, and Yale), and judges who are known to consistently hire early

come from a subset of circuits.

Attempts to set the date of the hiring of clerks failed repeatedly, and anecdotal evidence

suggests that unraveling takes a particular dynamic pattern. It is also often claimed that

unraveling is triggered by judges from the 9th Circuit (California), and that the circuits on

the East Coast abide more often with suggested deadlines. The reasons for this pattern are

under debate: the 9th Circuit judges point out that the East Coast judges have a geographical

advantage as they are close to more top-ranked law schools. The East Coast circuits claim that

the 9th Circuit jumps-the-gun because it is less attractive to clerks due to lesser prestige of

its positions (see also [3,4]). We interpret the claims to suggest that there are advantages to

geographic proximity. This may be due to logistical considerations, or (social) communication

networks between students (or their mentors) and judges. We also note that a connection

between a judge and a law school may be reinforced by the fact that clerks are heavily involved

in the search for their successors.

Additional markets. Every year in the US more than 20k medical students are matched

with their �rst position. After periods of unraveling and reorganization, the market for med-

ical residencies presently operates successfully by a centralized clearinghouse organized by the

National Residency Matching Program (NRMP). In 2002, an anti-trust suit against the NRMP

and numerous other defendants was brought by 16 law �rms on behalf of 3 former residents

seeking to represent the class of all former residents. The theory behind the suit is that a

match inevitably holds down wages.5 Nevertheless, consistent with the �nding from the gas-

troenterology fellowships market, [34] �nds that there is no di¤erence in wages between medicine

subspecialities that use a match and those that do not. The suit was dismissed on August 12,

2004 in an Opinion, Order & Judgment by Judge Paul L. Friedman.

Logistical constraints on interviewing impose a constraint on the number of early o¤ers

that �rms are able to make in many labor markets. The constraint is even more explicit in the

market for MBA graduates. First, one channel of unraveling is via �rst year summer internships,

which are often followed by job o¤ers. Second, in some schools (e.g., Harvard Business School)

5See [9,12,24,31] for theoretical work with di¤erent conclusions.
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interviewing is restricted to school vacations and a formal "interviewing week." Firms that do

not follow the rules are penalized and may be excluded from future recruiting events. Students

may also be penalized.

We also note that not all entry-level labor markets are faced with a choice between a

centralized clearinghouse and unraveling. The US market for junior faculty in economics is

operating without a centralized clearinghouse and su¤ers little unraveling. One characteristic

of the market is that interviews are conducted over a three-day period at a large conference,

which most universities, large private companies, and job candidates attend. The conference

is designed to provide coordination, reduce interviewing costs and increase the e¢ ciency of

the market. Before the conference, applications are sent and information regarding candidates

is revealed to any institution to which a candidate applies. Earlier in a candidate�s training,

her mentors may already share information with their colleagues, and do so more often as

the job market season approaches. Connections of reliable information sharing can be based

on coauthoring, repeated interactions or other common history. Since high pro�le faculty

are invited to give talks and participate in many academic events, one may suspect that the

underlying network of connections is dense for students at highly ranked institutions, whose

mentors are well connected.

Finally, three characteristics �t all of the labor markets described above. First, the training

period for the candidates is long and involves acquiring new skills. During this time both the

workers and their teachers learn about the workers� expected productivities. Much related,

all of the above markets are for highly skilled workers. In such markets the number of high

quality workers is often smaller than the market saturation level. This is clear in the markets

for medical residents and for junior faculty in economics, in which the number of candidates

is often smaller than the number of positions. However, even where this is not the case (e.g.,

judicial clerkships market), there is high variance in workers�abilities, and employers compete

for the best workers. Third, it is not uncommon for employment o¤ers to be open for a short

duration, and it is widely acknowledged that acceptance of an employment o¤er is a binding

commitment. For example, in the market for judicial clerks o¤ers are sometimes open for less

than 30 minutes, and there is little evidence of law students who renege on early acceptances

of judges�o¤ers.6 Employment o¤ers that are open for a limited duration and the acceptance

6See [4,36].
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of which is considered binding are often called exploding o¤ers in the market design literature.

3 A model of hiring and employment

In this section we present a simple model of employment and embed it in a two-stage hiring

process. We defer the discussion of the assumptions imposed by the structure of the model to

section 9.2.

There is a �nite set of �rms, F � f1; 2; :::; nfg, and a �nite set of workers,W � f1; 2; :::; nwg.

Each worker w can work for at most one �rm and each �rm f can employ at most one worker.

A worker w is characterized by a productivity level qw 2 fL;Hg. We assume that production

depends only on the workers�productivities and normalize wages to zero. The payo¤ of �rm f

from employing worker w is captured by (1). In the next section we introduce heterogeneity in

�rms�payo¤s.

�f (qw) = � (qw) =

�
�H if qw = H
�L if qw = L

(where �H > �L). (1)

Workers have idiosyncratic preferences over �rms. Speci�cally, let worker w�s utility be:

uw (f) = �wf : (2)

A �rm that does not employ any worker, and an unemployed worker have a payo¤ of 0.

Prior to employment, there are two stages of hiring that correspond to stages in the workers�

training denoted S = �1 and S = 0. At stage S = �1 workers are in training institutions (i.e.

law school, medical school, internship programs, etc.) and cannot yet be employed. At S = 0,

workers graduate from their studies and are ready to be employed. It is assumed that prior

to stage S = �1 nature assigns each worker with productivity level qw = H or qw = L with

equal probability, and preferences f�wfgf2F that are drawn independently from a distribution

H with positive density in every point in the support [�; �] for some � > 0 and � � �. The

realizations of qw and f�wfgf2F are independent of each other and across workers. Workers and

�rms do not observe qw and f�wfgf2F but learn about them over time as described below.

3.1 Stage S = �1: early hiring

At S = �1 information about own productivity and preferences is revealed to the workers

and their mentors as follows: worker w observes a signal
�
sw; f�wfgf2F

�
where f�wfgf2F are
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the worker�s preferences and sw 2 fh; lg is a noisy signal of the worker�s productivity. The

mentor of worker w observes only sw and not the worker�s preferences. If worker w is of high

productivity (qw = H) she receives a signal sw = h with probability � 2
�
1
2
; 1
�
and a signal

sw = l with probability (1� �). For ease of notation assume that if worker w has productivity

qw = L she receives the signal according to the reversed probabilities. The realizations of the

signals are independent across workers.

The signal sw consists of �soft�information (in-class exam grades, performance as research

assistant, etc.). In particular, there is no o¢ cial document or public track record that allows

worker w to prove that she received a given signal. However, the worker�s mentors have pre-

existing connections with a subset of the �rms that allow for the credible transmission of workers�

signals to these �rms. If �rm f and at least one of the mentors of worker w are connected,

f learns sw accurately at stage S = �1. Since mentors do not have a strategic role in our

model, we say that a worker w and a �rm f are connected if one of the mentors of worker w is

connected to �rm f . Formally, for each worker w there exists a set of �rms Nw � F that can

learn sw. Denote by Nf � W the set of workers such that �rm f can learn fswgw2Nf . Firms

cannot learn �wf for any worker w.

After learning fswgw2Nf , each �rm can make at most one o¤er. Firm f can make an o¤er to

any workerw whetherw 2 Nf or not. Each workerw can then choose to accept one o¤er or none.

If �rm f makes an o¤er to worker w and worker w accepts, both commit that after graduation

(at S = 0) w will be employed by f . The commitment is binding and both w and f exit the

labor market. We assume further that �rm f incurs a cost cf for hiring at stage S = �1, and

let cf be drawn from a distribution with a continuous cumulative distribution function D (c; c),

independently across �rms. The distribution D captures any unmodeled heterogeneity in the

institutional �exibility of �rms with respect to the timing of hiring. Finally, we assume that

�L < 0; and � �L � �H : (3)

Condition (3) guarantees that a �rm f does not hire a worker w if f has no (or negative)

information about the productivity of w.

To summarize, the timeline of the early labor market at stage S = �1 is as follows:

1. Each worker w observes a noisy signal sw. Each �rm f 2 Nw learns sw.

2. Each �rm f makes an o¤er to at most one worker w 2 W .
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3. Each worker w who receives at least one o¤er decides whether to accept any of the o¤ers
(at most one).

4. If �rm f makes an o¤er to worker w and worker w accepts, both exit the labor market
and worker w is employed by �rm f starting at stage S = 0:

3.1.1 Networks and information

If �rm f is able to learn sw (i.e., f 2 Nw and w 2 Nf) we say that f and w are connected. We

note that the sets of �rms, workers, and connections (links) induce a network. We now describe

the network structure as well as �rms�and workers�knowledge and beliefs with respect to the

network structure.

We are mainly interested in large markets. It is by now widely accepted that in large

networks: [1] the underlying process of network formation has a strong stochastic element,

and [2] some aggregate characteristics of the network structure, such as the distribution of the

number of connections, are often consistent across networks and time. Thus, we assume that

prior to stage S = �1, fNwgw2W and fNfgf2F are determined by a random process that is

described below. Firms and workers know the random process of network formation, but do

not have complete knowledge of the network. Instead, a worker w (�rm f) observes only Nw

(Nf ).7

Formally, we capture the network of connections between workers and �rms with a graph

G � hF;W;Ei, where E � F �W is the set of connections (edges) between �rms and workers.

The degree of worker w (�rm f) is the number of connections of worker w (�rm f):

rw = jNwj (rf = jNf j) : (4)

Let �W (r) (�F (r)) be a rational number that captures the fraction of workers (�rms) with

degree r for r = 0; 1; 2; :::1. Given the number of workers nw, and the degree distribution (�W
and �F ) there is a unique number of �rms nf that is consistent with any underlying graph G.

Thus, we omit nf and let G (nw; �W ; �F ) be the set of networks consistent with (nw; �W ; �F ).8

Assume that before stage S = �1 the network is chosen from G (nw; �W ; �F ) uniformly at

random (u.a.r.) and that worker w (�rm f) knows: [1] the number of workers and �rms in the

7In section 5.1 we discuss further the motivation for the random process of the formation of the network.
8For any �xed �W and �F there exists an in�nite strictly increasing sequence of integers fnwg s.t.

G (nw; �W ; �F ) 6= ; (see [20]). All statements should be read as holding for nw s.t. the aforementioned set
is non-empty.
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market (nw and nf); [2] her own links (Nw or Nf); and [3] the degree distribution (�W and

�F ). Thus, the Bayesian posterior of worker w (�rm f) with degree r puts identical probability

on all networks in G (nw; �W ; �F jrw = r) (G (nw; �W ; �F jrf = r)). Denote by G (nw; �W ; �F j�) a

member of G (nw; �W ; �F j�) that is chosen u.a.r.

It is possible that some �rms and workers have no connections (r = 0). To describe changes

to the network structure that do not involve such �rms and workers we use a truncated de-

gree distribution P . Formally, let P (r; �W ) = �W (r) = (1� �W (0)) be the fraction of workers

with degree r as a fraction of the workers who have positive degrees. The de�nition extends

immediately to P (r; �F ).

3.1.2 Scarcity of high productivity workers

Many of the labor markets that motivate this paper are markets for highly skilled workers,

in which the number of high quality workers is smaller than the market saturation level (see

evidence in section 2). Recall that � 2
�
1
2
; 1
�
, and consider the following de�nition.

De�nition 1 We say that h�W ; �F ; �i exhibits scarcity of high productivity workers if for

any nw and every network G 2 G (nw; �W ; �F ) there exists � > 1 such that, nf > � �
�
1� �

2

�
�nw.

De�nition 1 includes all markets in which there are not many more workers than open

positions. In particular, we show later that assuming scarcity of high productivity workers

guarantees that in asymptotically large markets, the number of high productivity workers who

are still seeking employment at stage S = 0 is (with probability 1) smaller than the number of

�rms that are looking for workers at S = 0.

3.2 Stage S = 0: graduation

At S = 0, workers graduate from their training and obtain a diploma and a track record that

contain veri�able information revealing their true productivities fqwgw2W . Thus, fqwgw2W can

be credibly transmitted to all �rms and are common knowledge. The preferences of any worker

w
�
f�wfgf2F

�
are still her private information. In this environment the network is obsolete

and we are in a familiar setup of one-to-one matching markets.9

9See [40] for a good introduction to matching theory.

12



The outcome of a matching market depends heavily on the underlying market rules (see

also [38,39]). Since we are also interested in how changes in the post-graduation market a¤ect

early hiring, we consider a large class of matching procedures that covers both centralized and

decentralized markets. Intuitively, a matching procedure is a function from sets of workers and

�rms to a probability distribution over a set of matchings. We focus on matching procedures

that are anonymous - i.e., take into considerations workers�and �rms�preferences but not their

identities, and that put positive probability only on weakly stable matchings - i.e., matchings

in which no �rm and worker that are matched prefer to stay unmatched and no worker and

�rm that would like to be matched to each other remain unmatched. The requirement that a

matching procedure be anonymous excludes matching procedures in which there is an ad-hoc

reason that some �rms and workers are matched at stage S = 0. The formal de�nition of an

anonymous matching procedure that guarantees a weakly stable matching builds on de�nitions

from matching theory and is deferred to the Appendix. Instead, we present now the main result

of this section and discuss its implications for the modeling of stage S = 0.

Lemma 1 shows that the requirement that a matching procedure is anonymous and guar-

antees a weakly stable matching, when applied to an asymptotically large market, pins down a

unique expected payo¤ for all �rms that participate in the post-graduation market. Moreover,

the expected utility of high productivity workers who reach stage S = 0 unmatched is asymp-

totically independent of the hiring at S = �1, and can be varied exogenously by the choice of

the particular matching procedure.

LetW 0
q be the set of workers with productivity q who reach S = 0 unmatched and let F 0 be

the set of �rms that reach S = 0 unmatched. Given a network G, signal accuracy level �, and

a matching procedure M denote by EG;M;� [uwjq] the expected utility of worker w 2 W 0
q and

denote by EG;M;� [�f ] the expected payo¤ of �rm f 2 F 0. Denote by EG;M;� [uwjq;W 0
H ;W

0
L; F

0]

and EG;M;� [�f jW 0
H ;W

0
L; F

0] the corresponding conditional expectations.

Lemma 1 Let h�W ; �F ; �i exhibit scarcity of high productivity workers, and let bG (�W ; �F ; nw)
be any network consistent with �W ; �F and nw. Assume that no worker who receives a low signal

at S = �1 is hired early (at S = �1 ). Then,

1. Given any anonymous matching procedure M that guarantees a weakly stable matching:

(a) For any worker w 2 W 0
L, E bG(�W ;�F ;nw);M;� [uwjL;W 0

H ;W
0
L; F

0] = 0.
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(b) For any � > 0

limnw!1 supf

����E bG(�W ;�F ;nw);M;� ��f jW 0
H ;W

0
L; F

0
�
� jW

0
H j

jF 0j � �H
���� < �:

Moreover, if all �rms are acceptable to all workers (� � 0), then for any �rm f 2 F 0,
E bG(�W ;�F ;nw);M;� [�f jW 0

H ;W
0
L; F

0] =
jW 0

Hj
jF 0j � �H .

2. For any � 2
�
max

�
0; �

�

	
; 1
�
and � > 0 there exists an anonymous matching procedure M

that guarantees a weakly stable matching such that

limnw!1 supw

���E bG(�W ;�F ;nw);M;� �uwjH;W 0
H ;W

0
L; F

0
�
� � � �

��� < �:

We show later that no worker who receives a low signal in stage S = �1 is ever hired

early. Thus, Lemma 1 applies throughout our analysis. While the result is of interest on its

own, we only use Lemma 1 to motivate exogenous variations in �, and to establish that all of

the market procedures that we focus on lead to (asymptotically) identical EG;M;� [uwjL] and

EG;M;� [�f jW 0
H ;W

0
L; F

0]. The following de�nition o¤ers a parameterization for the family of

matching procedures that our analysis covers.

De�nition 2 A matching procedure M is parameterized by �M 2 [0; 1] if:

[1] M is anonymous and guarantees a weakly stable matching, and

[2] for all G 2 G (nw; �W ; �F ) and for any W 0
H , W

0
L, and F

0 that are possible under the as-

sumption that no worker who receives a low signal at S = �1 is hired early (at S = �1), the

expected utility of a high productivity worker in the post-graduation market is asymptotically

�M � �. Namely, limnw!1 supw jEG;M;� [uwjH;W 0
H ;W

0
L; F

0]� �M � �j = 0:

We interpret �M as a measure of the e¢ ciency of the matching procedure. In section 8.1

we discuss further our notion of weak stability and the interpretation of �M . We also show

that many of the centralized mechanisms studied in the literature generate matchings that are

characterized by �M = 1.

4 Bayesian equilibrium and "-equilibrium

We now de�ne the notions of Bayesian equilibrium and "-equilibrium in our setup. Non

trivial strategic decisions are made only at stage S = �1: �rms decide who to make of-

fers to, and workers decide which o¤ers to accept. Let �w be the strategy of worker w, i.e.,

14



�w

�
sw; f�wfgf2F ; Nw; eFw� is the o¤er accepted by worker w who receives a signal sw, has

preferences that are captured by f�wfgf2F , a set of �rms connected to her Nw, and o¤ers from

every �rm f 2 eFw at stage S = �1. Similarly, �f �c;Nf ;fWh

�
is the probability distribution

over workers to whom an early o¤er is made by �rm f that has a cost of hiring early cf = c,

a set of workers connected to it Nf , and the knowledge that every worker w 2 fWh � Nf

received a signal sw = h (�f (�) = w0 implies that �rm f does not make an o¤er at stage

S = �1). When it is clear from the context we let �w
� eFw� = �w

�
sw; f�wfgf2F ; Nw; eFw� and

�f

�fWh

�
= �f

�
cf ; Nf ;fWh

�
:

A family of �rms�strategies that is natural in our context includes strategies in which �rms

ignore the names (or labels) of the workers and make their o¤ers based only on the economically

meaningful attributes of the workers. Formally,

De�nition 3 We say that �f is a label-free strategy if �f
�
c;Nf ;fWh

�
assigns identical prob-

abilities to any w and w0 for whom at least ONE of the following holds: [1] �rm f knows that w

and w0 received high signals
�
w;w0 2 fWh

�
; [2] �rm f knows that w and w0 received low signals�

w;w0 2 NfnfWh

�
; [3] �rm f does not know what signals w and w0 received (w;w0 2 WnNf ).

For a given network G, market procedure M , and signal accuracy �, let �G;M;� (f) be the

expected payo¤ of �rm f that employs strategy �f . Similarly, Let UG;M;� (w) be the expected

utility of worker w who employs strategy �w. We now de�ne "-equilibrium in our setup.

De�nition 4 The vectors of strategies f�fgf2F and f�wgw2W are an "-equilibrium if for alle�f 2 supp (�f ), f 2 F :
�G(nw;�W ;�F );M;�

�
f j�f ; cf ; Nf ; f�f 0gf 02Fnffg ; f�w0gw02W ;

�
�

�G(nw;�W ;�F );M;�

�
f je�f ; cf ; Nf ; f�f 0gf 02Fnffg ; f�w0gw02W ;

�
� "

and for all e�w 2 supp (�w), w 2 W :
UG(nw;�W ;�F );M;�

�
wj�w; f�wfgf2F ; f�w0gw02Wnfwg ; f�f 0gf 02F

�
�

UG(nw;�W ;�F );M;�

�
wje�w; f�wfgf2F ; f�w0gw02Wnfwg ; f�f 0gf 02F

�
� "

If " = 0 the de�nition amounts to a Bayesian equilibrium. We now analyze �rms�and workers�

best response correspondences separately and show that they can be summarized using two

random variables. If a �rm f makes an o¤er at S = �1 to a worker w who receives a signal

sw = h:
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�G;M;�

�
f jfWh; �f

�fWh

�
= w for some w 2 W

�
=

Pr fw acceptsg �
n
Pr
h
qw = HjNf ;fWh

i
� �H + Pr

h
qw = LjNf ;fWh

i
� �L � cf

o
+

+ Pr fw rejectsg � EG;M;� [�f ]
(5)

and if �rm f does not make an o¤er at stage S = �1:

�G;M;�

�
f jfWh; �f

�fWh

�
= w0

�
= EG;M;� [�f ] (6)

Note that Pr fw acceptsg, Pr fw rejectsg, andEG;M;� [�f ] depend on f�f 0gf 02Fnffg and f�w0gw02W .

On the other hand, Pr
h
qw = HjNf ;fWh

i
, and Pr

h
qw = LjNf ;fWh

i
are independent of the

strategies employed by all �rms and workers. Now consider a worker w who receives early

job o¤ers (at S = �1) from a set of �rms eFw � F . If w accepts the o¤er of �rm f 2 eFw then
UG;M;�

�
wj eFw; �w ��; eFw� = f

�
= �wf (7)

and otherwise

UG;M;�

�
wj eFw; �w ��; eFw� = f0

�
= Pr [qw = Hjsw]�EG;M;� [uwjH]+Pr [qw = Ljsw]�EG;M;� [uwjL]

(8)

Conditional on fWh

� eFw� the best response of �rm f (worker w) depends on the network

structure and on the strategies of all other �rms and workers only viaEG;M;� [�f ] (EG;M;� [uwjH]).

Formally,

[1] Consider a �rm f . Conditional on fWh 6= ;, �rm f makes an o¤er at S = �1 if and only if

cf < � ��H +(1� �) ��L�EG(nw;�W ;�F );M;� [�f ]. Given that cf is drawn from D, independently

across �rms, the ex-ante probability that a �rm f with fWh 6= ; makes an o¤er at S = �1 is

captured by

��W ;�F ;M;� (�) = D
�
� � �H + (1� �) � �L � EG(nw;�W ;�F );M;� [�f ]

�
: (9)

[2] Consider a worker w. Conditional on w receiving exactly one o¤er (from a �rm f) at S = �1,

w accepts the o¤er if and only if �wf > � � EG(nw;�W ;�F );M;� [uwjH]. Given that �wf is drawn

from H, independent across �rms and workers, the ex-ante probability that a worker with one

early job o¤er accepts the o¤er is captured by

�G;M;� (�) = 1�H
�
� � EG(nw;�W ;�F );M;� [uwjH]

�
(10)
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Similarly, the ex-ante probability that a worker w who receives exactly m o¤ers at S = �1

accepts an o¤er is 1 �
�
1� �G;M;� (�)

�m
, and conditional on accepting an o¤er, w accepts the

o¤er that maximizes f�wfgf2 eFw .

5 Equilibrium existence and structure

In this section we show that equilibrium corresponds to a �xed point of a mapping from the

fraction of workers hired at stage S = �1 to itself, and �nd that in large networks "-equilibria

exist for arbitrary low ". Moreover, when �rms employ label-free strategies, the set of equilibria

is fully characterized as the set of �xed points of a simple function.

Let b
0 be a random variable that describes the (common and rational) expectations of

workers and �rms with respect to the fraction of workers hired at S = �1 for any given

realization of workers�signals. Consider a mapping


0 =  G;M;� (b
0) =  G;M;�

�
f�G;M;� (wjb
0)gw2W ;

�
�G;M;� (f jb
0)	f2F� (11)

that maps from the expectations of workers and �rms with respect to hiring at S = �1 to the

random variable that captures the same outcome at S = �1. Any 
00 such that 
00 =  G;M;� (

0
0)

captures an equilibrium level of hiring at S = �1, and any equilibrium with 
�0 corresponds

to a �xed point 
�0 =  G;M;� (

�
0). However,  G;M;� (
) is an extremely complex object that

depends on the entire network structure and is stochastic even for a �xed network structure

and �xed realization of workers�signals. Thus, instead of characterizing  G;M;� directly, we

establish that in asymptotically large networks and for any h�W ; �F ;M; �i, the outcome of

 G(nw;�W ;�F );M;� (
0) converges to a well behaved function with a deterministic output. We are

then able to characterize "-equilibria for arbitrarily small ".

We now illustrate our analysis using a simple hypothetical exercise: consider a network in

which there is no correlation between the degrees of �rms and workers that are connected - i.e., if

we choose a worker w 2 W u.a.r. and then choose a �rm f 2 Nw u.a.r., then the probability that

rf = r is independent of rw (and of rf 0 for any f 0 2 Nw) and captured by eP (r; �F ) = P (r;�F )�r
rf

,

where P (r; �F ) is the fraction of �rms with degree r out of the �rms that have positive degrees

(as de�ned in section 3.1.1), and rf = EP [rf jrf � 1] =
P

r2f1;2;:::1g P (r; �F ) � r. Suppose

further (hypothetically) that for every worker w, EG(nw;�W ;�F );M;� [uwjH] = �M � � and that

for any �rm f , EG(nw;�W ;�F );M;� [�f ] =
jW 0

Hj
jF 0j � �H (recall that W 0

H is the set of workers with
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high productivity that reach S = 0 unmatched and F 0 is the set of �rms that reach S = 0

unmatched). Now consider a worker w chosen u.a.r. from the workers who received a high

signal (sw = h). Then, the probability that w receives a job o¤er from a �rm f that is chosen

u.a.r. from Nw is

e� �W ;�F ;M;� (
) =

1X
rf=1

ePF (rf ; �F )"e��W ;�F ;M;� (
) rf�1X
m=0

�
rf � 1
m

�
0:5m0:5rf�m�1

1

m+ 1

#
(12)

=
1X
rf=1

eP (rf ; �F ) � [e��W ;�F ;M;� (
) � (1� 0:5rf ) = (0:5 � rf )]
where

e��W ;�F ;M;� (
) = D
0@� � �H + (1� �) � �L �

1
2
� � � 
P1

r=0 �W (r)�rP1
r=0 �F (r)�r

� 

� �H

1A : (13)

To see why, note that
�
r�1
m

�
0:5m0:5r�m�1 is the probability that there are m other sw = h

workers connected to �rm f conditional on jNf j = r. Finally, 1
m+1

is the conditional probability

that f makes the o¤er to w. The derivation of e��W ;�F ;M;� (
) is available in the appendix.
Given that the realizations of the signals, the o¤ers received and the acceptance of o¤ers are

independent across workers, the expected number of workers hired in stage S = �1 is captured

by

e �W ;�F ;M;� (
) =
1
2
� (1� �W (0)) �

P1
rw=1

P (rw; �W ) �
�
1�

�
1� e� �W ;�F ;M;� (
) + e� �W ;�F ;M;� (
) � �1� e��W ;�F ;M;���rw�

(14)
where

e��W ;�F ;M;� = 1�H [� � �M � �] : (15)

The calculation of e �W ;�F ;M;� (
) above follows a naive counting exercise. Namely, it is equiva-
lent to going over all of the workers, one by one, and evaluating their probabilities of receiving

at least one acceptable early o¤er. Note that for any 
 2 [0; 1], e �W ;�F ;M;� (
) is deterministic
and well behaved. Thus, establishing that for any b
 2 [0; 1] and � > 0,

limnw!1 Pr
���� G(nw;�W ;�F );M;� (b
)� e �W ;�F ;M;� (b
)��� < �

�
= 1 (16)

would allow us to characterize the equilibrium structure in large networks. Formally,

De�nition 5 we say that 
� 2 [0; 1] is a 0-equilibrium in large networks (or simply 0-
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equilibrium) with h�W ; �F ;M; �i if for any " > 0 there exists nw 2 Z+ such that for every

n0w > nw there exists an "-equilibrium with G (nw; �W ; �F ) ;M; �, and 
� in which

Pr
�
 G(nw;�W ;�F );M;� (


�) 2 [
� � "; 
� + "]
�
> 1� ".

The set of 0-equilibria corresponds to the set of �xed points of e �W ;�F ;M;� (
).
Theorem 1 Let �W ; �F have �nite support and h�W ; �F ; �i exhibit scarcity of high productivity

workers. Consider a market procedure M that is parameterized by �M 2 [0; 1]. Then, there

exists 
 2 [0; 1] such that 
 is a 0-equilibrium with h�W ; �F ;M; �i. Assume further that �rms

employ label-free strategies. Then, 
� = e �W ;�F ;M;� (
�) if and only if 
� is a 0-equilibrium with

h�W ; �F ;M; �i.

In Lemma 4 in the Appendix, we derive a limit closed form expression for  G;M;� (b
) without
formally expressing  G;M;� (b
) for any �nite network G. To this end, we rely on a recent graph
theoretic result by [15] that implies that in a network that is chosen u.a.r. conditional on a

degree distribution, as the network grows, the degree correlation goes to zero. We then apply

the law of large numbers to conclude that the fraction of workers hired at S = �1 converges

to the mean and that (16) holds. For the remainder of the paper, we focus on the analysis of

0-equilibria in regular environments in which Theorem 1 and Lemma 4 apply.

De�nition 6 An environment h�W ; �F ;M; �i is regular if: [1] �W ; �F have �nite support; [2]

h�W ; �F ; �i exhibit scarcity of high productivity workers; and [3] M is parameterized by some

�M 2 [0; 1].

Multiplicity. Theorem 1 does not rule out multiplicity of 0-equilibria. This is not sur-

prising given that �rms�actions are strategic complements. More speci�cally, multiplicity is

determined by the properties of e �W ;�F ;M;� (
) which correspond to the properties of �W , �F ,
M , �, and e��W ;�F ;M;� (
). For example, if e��W ;�F ;M;� (
) is concave for every 
 2 [0; 1], then
there are at most three equilibria, one at 
� = 0 and one or two additional equilibria.

5.1 Unraveling

In this section we de�ne unraveling as a dynamic process in which �rms that hire early (at

S = �1) create expectations that they will do so in subsequent years, when new cohorts of
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workers graduate. The expectations that some �rms hire early trigger preemptive actions by

other �rms, and the fraction of workers hired early increases from year to year. We also provide

a de�nition of greater unraveling that is suitable for environments with multiple equilibria.

Consider an entry level labor market in which a new cohort of workers graduates every year

and �rms hire new workers every year. For simplicity, assume that all cohorts of workers are of

the same size nw. The hiring process in each year follows stages S = �1; 0 that are described

above. The network of connections between �rms and a new cohort of workers is drawn u.a.r.

from all of the possible networks with the same �W and �F . To motivate the changes to the

network structure, recall that in every year di¤erent workers are searching for jobs. Given that

each worker can have a di¤erent mix of mentors, the network de�ned by the connections of

the di¤erent subsets of mentors that each worker has is di¤erent across cohorts, even if the

connections of each mentor are the same. The speci�c assumptions that the network is selected

u.a.r. and that �W and �F stay exactly the same can be relaxed.

In this dynamic environment, consider an unraveling process driven by �rms that maximize

their immediate payo¤s within each year (workers maximize their overall utility, but each worker

is in the market for one year). At year t = 0, some fraction 
0 of the workers (all with sw = h)

are hired at S = �1. At each year t > 0, each �rm and worker best respond to the outcome

of the previous year�s hiring cycle. Let 
t denote the fraction of workers (all with sw = h)

hired at stage S = �1 in year t, then 
t =  G(nw;�W ;�F );M;� (

t�1) and any rest point of the

system correspond to a static Bayesian equilibrium. Following (16) and Theorem 1, the limiting

dynamic process (when nw is arbitrary large) is captured by 
t = e �W ;�F ;M;� (
t�1) and any rest
point of the system corresponds to a static 0-equilibrium. Note that e �W ;�F ;M;� has a positive
slope for every 
 2 [0; 1]. Hence, from any starting point, the convergence of the limiting

dynamic process is monotone, either upwards or downwards.

A dynamic process of unraveling, in which the market participants modify their strategies

based on the previous hiring cycle�s outcomes, captures the dynamics of some well studied

labor markets (see [41] and references therein) and suggestive evidence from the experimental

market design literature (see also [23]). Moreover, considering the process of unraveling as

dynamic lends itself to a natural way of capturing the notion that some markets generate

greater unraveling then other markets.
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De�nition 7 Let 
t (nw; h�W ; �F ;M; �i ; 
0) =  G(nw�W ;�F );M;� (

t�1 (nw; h�W ; �F ;M; �i ; 
0))

where 
0 (nw; h�W ; �F ;M; �i ; 
0) = 
0. We say that environment h�i1 =


�1W ; �

1
F ;M

1; �1
�
, gen-

erates greater unraveling than environment h�i2 =


�2W ; �

2
F ;M

2; �2
�
, if for any 
0 2 [0; 1]

limnw!1 limt!1
�

t
�
nw; h�i1 ; 
0

�
� 
t

�
nw; h�i2 ; 
0

��
� 0 (17)

De�nition 7 captures the idea that environment h�i1 generates greater unraveling than h�i2

if from every starting point h�i1 leads to a 0-equilibrium with more hiring at stage S = �1

than h�i2. The following Corollary is implied by Lemma 4 and establishes a useful connection

between e �W ;�F ;M;� and the unraveling generated by environment h�W ; �F ;M; �i.

Corollary 1 Consider two regular environments h�i1 =


�1W ; �

1
F ;M

1; �1
�
and h�i2 =



�2W ; �

2
F ;M

2; �2
�
,

and assume that all �rms employ label-free strategies. Then, if e �1W ;�1F ;M1;�1 (
) � e �2W ;�2F ;M2;�2 (
)

for every 
 2 [0; 1], then h�i1 generates greater unraveling than h�i2.

6 Comparative statics

6.1 The network structure �addition of links

There are several systematic ways in which links can be added to a network. Let W 1 � W

(F 1 � F ) be the set of workers (�rms) that have a degree of at least 1. One way of adding

links is by increasing the degrees of workers in W 1 (�rms in F 1) so that the number of workers

(�rms) that have a degree of at least 1 does not change. We call such an addition of links

an increase in the network�s density. A di¤erent way for adding links involves changes to W 1

(F 1). In particular, one can add links that connect workers (�rms) that were not connected

before and had a degree of zero. We call such an addition of links an increase in the network�s

span. This distinction turns out to be important; increasing a network�s density and increasing

a network�s span have signi�cantly di¤erent e¤ects on unraveling.

Network span. Adding connections by increasing the span of the network generates

greater unraveling.

Proposition 1 Consider two regular environments


�1W ; �

1
F ;M; �

�
and



�2W ; �

2
F ;M; �

�
such

that �1W (0) < �2W (0), �
1
F (0) < �2F (0), and for all r � 1, P

�
r; �1W

�
= P

�
r; �2W

�
and P

�
r; �1F

�
=

21



P
�
r; �2F

�
. Assume that all �rms employ label-free strategies. Then,



�1W ; �

1
F ;M; �

�
generates

greater unraveling than


�2W ; �

2
F ;M; �

�
.

The intuition for Proposition 1 is straightforward: increasing the number of connected work-

ers and �rms increases the number of o¤ers at S = �1. The connection between Proposition 1

and the evidence in section 2 is also suggestive. In the markets for gastroenterology fellowships,

every gastroenterology department has a connection with at least one internal medicine depart-

ment (at the same hospital). In the market for judicial clerkships, judges as well as law students

from top schools are well connected �essentially all judges have colleagues in top universities

and are also connected via their current clerks.

Network density. Increasing the networks� density leads to greater unraveling if the

initial network is sparse and the increase is small. On the other hand, if the initial network is

dense, increasing the network�s density leads to lesser unraveling.

For degree distributions �W ; �F , let �
�
W ; �

�
F be degree distributions such that for every r,

��W (� � r) = �W (r), and �
�
F (� � r) = �F (r). We call � the density multiplier of �W ; �F .10

Proposition 2 Let h�W ; �F ;M; �i be a regular environment and let all �rms employ label-free

strategies. Consider �H > �L � 1. Then,

[1] for anyM and �, there exists r = r (M;�) 2 Z+ such that ifmin
�
�L � rjr � 1; �F (r) > 0

	
>

r, then
D
��

L

W ; �
�L

F ;M; �
E
generates greater unraveling than

D
��

H

W ; ��
H

F ;M; �
E
; and

[2] for any M and � such that H [� � �M � �] > 1
3
there exists r = r (M;�) 2 Z+ such

that if max
�
�H � rj�F (r) > 0

	
< r then

D
��

H

W ; ��
H

F ;M; �
E
generates greater unraveling thanD

��
L

W ; �
�L

F ;M; �
E
.

Part 1 of Proposition 2 is surprising partly because it establishes that unraveling is not

maximized when the network is very dense or in the well studied complete market. In particular,

in markets in which early information di¤usion is not based on personal connections we would

expect lower levels of unraveling than in some markets in which connections are important.

To better understand the forces behind the non monotonicity captured by Proposition 2,

it is useful to think of stage S = �1 as divided to two steps: in the �rst step, the network is
10Our claims apply to � such that � � r 2 Z+ for every r in the support of �F and �W .
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pruned by eliminating [1] all workers who receive a low signal (sw = l); and [2] all �rms that

would not make early o¤ers at stage S = �1 even if they are connected to workers who receive

high signals. In the second step the induced (pruned) network is analyzed �each �rm that has

at least one connection makes an o¤er to one of the workers connected to it at random.

Now suppose that we start with two networks of di¤erent initial densities. At the end of

the �rst step the denser network remains (weakly) denser and has a (weakly) larger span. To

see why, consider the networks in �gure 1. If both �rms plan to make early o¤ers and both

workers receive high signals, then the networks remain the same at the end of the �rst step and

the network in �gure 1b is denser. On the other hand, if only �rm f2 plans to make an early

o¤er and only worker w1 receives a high signal then the network induced by pruning �gure 1b

has a larger span than the network induced by pruning �gure 1a.

In the second step, we compare across networks that may be di¤erent in span and density,

and include only �rms that plan to make early o¤ers and workers who receive high signals. The

e¤ect of the di¤erence in span is straightforward; a larger span leads to greater unraveling. The

e¤ect of di¤erences in density in the second step goes in the opposite direction: greater density

implies that less workers are hired early. To see why, suppose that at the end of the �rst step

(the pruning step) we are left with the networks in �gure 1. For simplicity, assume further

that both workers will accept an early o¤er from either �rm rather than stay unmatched until

S = 0. Then, in �gure 1a both workers are hired early with probability 1, whereas in �gure 1b

there is a positive probability
�
= 1

2

�
that both �rms make an o¤er to the same worker and only

one worker is hired early. More generally, additional links reduce the ability of the network to

act as a coordination devise for determining the worker to whom each �rm makes an o¤er. To

see the impact of (lack of) coordination, recall that in the second step each �rm makes at most

one early o¤er. Making this o¤er uniformly at random to a high signal worker on a complete

network is equivalent to making it on a network drawn uniformly at random from those in

which all �rms have a single link to a high signal worker. However, a network drawn uniformly

at random from those in which all �rms have a single link to a high signal worker has a low

expected span (many high signal workers are not connected to any �rm). This implies that due

to the lack of coordination, the complete network performs as if it were a network with a lower

span. We therefore conclude that an increase in density in the second step is equivalent to an

indirect decrease in e¤ective span.
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To aggregate these two forces and derive the non monotonic conclusion captured by Propo-

sition 2, note that if a network is very dense, the direct e¤ect of the pruning step on the span

of the network is minimal �with high probability all of the workers who receive a high signal

and all of the �rms who are interested in making early o¤ers have at least one connection in

the induced network after the �rst step. Therefore, if two networks with high densities are

compared, the induced networks at the end of the �rst step di¤er mainly in density, and the

lower density network exhibits greater unraveling. On the other hand, if two networks that

have low densities are compared, the induced networks at the end of the �rst step di¤er greatly

in span, and the lower density network exhibits lesser unraveling.

�gure 1a

Firms

Workers

f2f1

w1 w2

�gure 1b

Firms

Workers

f2f1

w1 w2

Figure 1

To summarize, increasing a network�s density increases the probability that a worker w

with sw = h and a �rm f with a low enough cf are connected. This leads to an increase in the

number of o¤ers made at S = �1. On the other hand, increasing the network�s density also

increases the probability that fewer workers receive a larger portion of the o¤ers.

6.2 The network structure �redistribution of links

We focus on redistribution of links across workers and �rms that have degree of at least 1, i.e.,

with no e¤ect on the span of the network (which is covered by Proposition 1). Proposition 3

predicts greater unraveling in markets in which some �rms have many connections and others

have few, than in markets in which �rms�degrees are similar. On the other hand, lesser unrav-

eling is predicted in markets in which some workers are much more connected than others, than

in markets in which workers�degrees are similar. While only suggestive, these predictions �t the

discussion of the evidence in section 2. The US market for junior faculty in economics exhibits

very little unraveling. It is also often claimed that Ph.D. candidates from top universities have

many connections via their high pro�le mentors whereas students from lower tier institutions
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are less connected. The discussion of the role of connectivity in triggering unraveling in the

market for judicial clerkships �ts the suggested patterns as well: the debate about the role of

the 9th Circuit (California) in triggering unraveling highlights the claim that unraveling may be

triggered because some judges are less connected than their peers to students from the highest

ranked law schools.

Proposition 3 Consider two regular environments


�1W ; �

1
F ;M; �

�
and



�2W ; �

2
F ;M; �

�
such

that �1W (0) = �2W (0), �
1
F (0) = �2F (0), and assume that all �rms employ label-free strategies. If

P
�
�; �2W

�
is a Mean Preserving Spread (MPS) of P

�
�; �1W

�
and P

�
�; �1F

�
is a MPS of P

�
�; �2F

�
,

then


�1W ; �

1
F ;M; �

�
generates greater unraveling than



�2W ; �

2
F ;M; �

�
.

We begin with the intuition for the e¤ect of the spread of workers�degrees. For any equi-

librium strategies, the probability that a worker receives at least one acceptable early o¤er

is increasing in her degree. However, adding a link to a worker with a high degree makes a

smaller di¤erence in the aforementioned probability than adding a link to a worker with a lower

degree. More generally, the probability that any worker w receives at least one acceptable o¤er

at S = �1 is increasing and concave in rw which implies the required result. Another way of

reaching the same conclusion is by considering the role of the network in facilitating coordina-

tion between �rms. Recall that �rms do not know the degrees of workers connected to them.

Therefore, �rms cannot condition their o¤ers on the degrees of workers, and the distribution of

o¤ers across workers is skewed towards highly connected workers. Since each worker can accept

at most one o¤er, a skewed distribution of early o¤ers leads to low levels of early hiring.

Now consider the e¤ect of the spread of �rms�degrees. For any equilibrium strategies, the

probability that a worker w receives an early o¤er from a �rm f (that is connected to her) is

decreasing in the degree of f . However, if �rm f has a high degree, one additional link does

not make a large di¤erence in the aforementioned probability, while if f has a low degree, one

additional link has a larger e¤ect. More generally, the probability that a worker w receives

an o¤er from a �rm f that is connected to her is decreasing and convex in rf which implies

the required result. Additional insight can be gained by examining the coordination provided

by the network in the distribution of o¤ers. At �rst glance the e¤ect of an increased spread

of �rms�degrees is not conclusive; some �rms become more connected and can cause more

situations in which a single worker receives multiple o¤ers. However, as the spread of �rms�
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degrees increases, the number of �rms who have large degrees decreases. For example, consider

the networks in �gure 2 and suppose that all workers receive high signals and all �rms make

early o¤ers. In the network in �gure 2b, if f1 makes an o¤er to w2 or to w3, then there will be

exactly one worker who receives two o¤ers and exactly one worker who receives no o¤er (w1) :

This occurs with probability 2
3
(if f1 makes an o¤er to w1 then each worker receives exactly one

o¤er). On the other hand, in the network in �gure 2a if f1 makes an o¤er to w2, then there

will be exactly one worker who receives two o¤ers and exactly one worker who receives no o¤er.

This occurs with probability 1
2
. However, even if f1 makes an o¤er to w1 (which occurs with

probability 1
2
), there is still a positive probability that one worker receives multiple o¤ers and

another receives none: with probability 1
2
, f2 makes an o¤er to w3. Therefore, in the network in

�gure 2a with probability 1
2
+ 1

2
� 1
2
= 3

4
only two workers receive early o¤ers and in the network

in �gure 2b the equivalent probability is 2
3
. The reason is that in �gure 2b more of the �rms

are coordinated, and any miscoordination must come from the actions of f1.

�gure 2a

f2f1

w1 w2

f3

w3

Firms

Workers

�gure 2b
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w1 w2
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w3

Firms

Workers

Figure 2

6.3 Market rules and the accuracy of early information

In this section we study the e¤ect of changes in the post-graduation matching procedure (cap-

tured by �M), as well as the e¤ect of changes in the accuracy of early signals of workers

productivities (i.e., changes in �).

The post-graduation matching procedure (�M). In line with the evidence reviewed

in section 2 regarding the connection between the e¢ ciency of the post-graduation market

(centralized or decentralized) and the level of unraveling, the following result shows that an

increase in �M leads to lesser unraveling. This connection is also recognized in empirical and

experimental work in market design (e.g. [23]), providing additional motivation for the design

of e¢ cient clearinghouses.
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Proposition 4 Consider two regular environments h�W ; �F ;M1; �i and h�W ; �F ;M2; �i such

that �M1 � �M2, and assume that all �rms employ label-free strategies. Then h�W ; �F ;M1; �i

generates greater unraveling than h�W ; �F ;M2; �i.

It is interesting to note that if � � �
�
then h�W ; �F ;M1; �i generates greater unraveling than

h�W ; �F ;M2; �i whereas if � < �
�
then h�W ; �F ;M1; �i and h�W ; �F ;M2; �i generate the same

level of unraveling. To see why, note that if � < �
�
workers who receive at least one o¤er at

stage S = �1 always accept one of the o¤ers that they receive (independent of �M). On the

other hand, if � � �
�
then for some �M workers reject early o¤ers from some �rms and their

rejection threshold increases in �M .

The accuracy of early signals (�). If � is higher, then a worker w with sw = h has a

higher probability of being qw = H. Thus w is more likely to reject o¤ers at stage S = �1.

For the same reason, a �rm f 2 Nw is more likely to make an o¤er to w at S = �1. These

two forces result in a non monotonic relationship between � and the unraveling level in the

market: moderate levels of accuracy of early signals generate greater unraveling than high or

low (extreme) levels.

Proposition 5 Consider two regular environments h�W ; �F ;M; �1i and h�W ; �F ;M; �2i such

that �1 � �2 and assume that all �rms employ label-free strategies.

[1] If � > 1
2
�� then there exist � 2

�
1
2
; 1
�
such that if �2 � � then h�W ; �F ;M; �2i generates

greater unraveling than h�W ; �F ;M; �1i, and

[2] There exist � 2
�
1
2
; 1
�
such that if �1 � � then h�W ; �F ;M; �1i generates greater unrav-

eling than h�W ; �F ;M; �2i.

Consider a worker w who receives at least one early o¤er. If all �rms are acceptable to a

worker w, and if � is very small, then w accepts one of the o¤ers with probability 1. Thus, a

small increase in � only increases the probability that a �rm makes an early o¤er to a worker w

with sw = h, and for every 
 2 [0; 1], ��W ;�F ;M;�2 (
) � ��W ;�F ;M;�1 (
). On the other hand, if �

is large, a �rm that is connected to at least one worker w such that sw = h makes an early o¤er

with probability 1. Thus, a further increase in � only decreases the probability that worker w

accepts, and e��W ;�F ;M;�2 � e��W ;�F ;M;�1.
27



7 Welfare

Welfare analysis of two-sided matching markets is subtle due to the inherent trade-o¤ between

the gain of one agent and the loss of other agents on the same side of the market. Nevertheless,

we are able to make the following observations.

Corollary 2 Greater unraveling leads to higher aggregate utility of connected workers
�P

w2fw2W jrw�1g uw

�
,

and to lower aggregate payo¤s of �rms
�P

f2F �f

�
.

The �rst part captures the insurance that unraveling provides to connected workers, whereas

the second part captures the hiring of low productivity workers that is caused by the early

hiring and that reduces aggregate �rms�pro�ts. The anecdotal evidence described in section 2

provides similar insights into the winners and losers of unraveling. For example, the idea that

unraveling makes some workers better o¤, and that a centralized match can hinder unraveling

(Proposition 4) helps to account for the observed resistance to the centralized match by a small

group of medical residents. In the same spirit, the medical residencies match as well as the

gastroenterology fellowships match were coordinated e¤orts of �rms. On the other hand, in the

gastroenterology fellowships and in the judicial clerkships markets some �rms (potentially well

connected ones) objected to policies that may stop unraveling.

Evaluating aggregate welfare changes in the economy as a whole requires further assump-

tions. For example, if �rms do not hire low productivity workers at S = 0 because there is a

large supply of �medium productivity�means of production (e.g., machines), then unraveling

decreases overall productivity in the market and may also decrease aggregate welfare. On the

other hand, consider the case that production using low productivity workers is more socially

e¢ cient than alternative modes of production (excluding high productivity workers), and that

�rms do not hire low productivity workers at S = 0 due to wage rigidity in the market. Then,

unraveling increases overall productivity, and with quasi-linear utilities unraveling also increases

aggregate welfare.11

11I thank an anonymous referee for suggesting the second example.
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8 Policy implications

8.1 Centralized clearinghouse

For a large range of parameters the equilibrium exhibits a tipping point structure with multiple

stable equilibria. In such environments cooperation is of �rst order. A centralized clearinghouse

or an "interviewing conference" (see section 2) provide e¤ective means of coordination. More-

over, Proposition 4 shows that a centralized clearinghouse may also serve to prevent unraveling

if it improves the e¢ ciency of the post-graduation market (increasing �). In this section, we

emphasize the latter point following two steps: �rst, we show that when the post-graduation

market consists of a centralized clearinghouse, any of the matching procedures commonly pro-

posed by the market design literature is guaranteed to generate a matching parameterized by

� = 1. Then, we argue that decentralized marketplaces generally facilitate an e¢ ciency level

characterized by � < 1.

The following Corollary provides the connection between � and a stronger notion of stability

studied in the market design literature �the additional requirement beyond weak stability is

that there is no �rm-worker pair who prefer being matched to each other rather than to their

assigned partner. For clarity, we call this more restrictive stability notion strict stability.

Corollary 3 Let h�W ; �F ; �i exhibit scarcity of high productivity workers, and let bG (�W ; �F ; nw)
be any network consistent with �W ; �F and nw. Assume that no worker who receives a low signal

in stage S = �1 is hired early. Then, for any anonymous matching procedureM that guarantees

a strictly stable matching, and for any � > 0

limnw!1 supw

���E bG(�W ;�F ;nw);M;� �uwjH;W 0
H ;W

0
L; F

0
�
� �
��� < �:

To see why, assume that a matching procedureM is anonymous and puts positive probability

only on strictly stable matchings. Now assume by contradiction that the outcome is such that

the expected utility of a high productivity worker is strictly below �� � for some � > 0. By the

assumption of scarcity of high productivity workers and Lemma 2, there are �rms that remain

unmatched. In particular, the number of unmatched �rms increases proportionally with the

size of the market. Consequently, in large markets, for any worker w and � > 0, the probability

that there is an unmatched �rm f such that �wf > ��� is (asymptotically) 1. This contradicts
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the assumption that the matching procedure puts positive probability only on strictly stable

matchings.

An interesting implication of Corollary 3 is that many of the algorithms used in the design

of centralized clearinghouses can be parameterized by � = 1 and are therefore generating lesser

unraveling than the equivalent decentralized markets.

Corollary 4 The Gale-Shapley worker proposing deferred acceptance algorithm [17], the ran-

dom serial dictator algorithm for high productivity workers (see also [1]), the top trading cycle

algorithm with initial random assignments of �rms to high productivity workers (see [2]), and

the so-called "Boston mechanism" with preferences submitted by high productivity workers are

all anonymous and in our setup all generate stable matchings. Therefore, they can be parame-

trized by � = 1.

Notably, the deferred acceptance algorithm generates strictly stable matchings in more

general environments, whereas the top trading cycle algorithm, the random serial dictator

algorithm, and the Boston mechanism generate stable matchings in our setup due to the �rms�

indi¤erence between any two high productivity workers.

In contrast with the centralized clearinghouse environment, and following [32] we consider

the notion of strict stability to be inconsistent with many decentralized markets.12 Yet even

in a decentralized environment, we �nd it reasonable to expect that: [1] an unmatched worker

eventually �nds an unmatched �rm if such a �rm exists (and vice versa); and [2] a worker

who prefers to stay unmatched rather than being matched with a certain �rm will not end up

matched to that �rm (and vice versa). Thus, our assumptions allow our model to incorporate

decentralized environments in addition to centralized ones. For example, a decentralized market

in which �rms and workers meet at random and match (or not) upon their �rst meeting is

covered by our model and can generate an expected utility that is much lower than � (but

never negative) for any high productivity worker who reaches S = 0 unmatched (equivalent to

a matching procedure parameterized by lower values of �).

12 [32] studies the stability properties of matchings that are generated by decentralized matching markets and
�nds that in the presence of market frictions and preference uncertainty, strong assumptions on the richness of
the economy have to be made in order for decentralized markets to generate stable outcomes in equilibrium.
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8.2 Worker- and �rm-driven unraveling, and "exploding o¤ers"

In our model, �rms make "exploding o¤ers" (i.e. o¤ers that expire at the end of stage S = �1).

This is a necessary condition for unraveling to occur. Otherwise, �rms would be concerned with

having their early o¤ers held until the formal market at stage S = 0, and could not bene�t from

early hiring. A simple-to-state policy rules out o¤ers that are open for only a short period of

time. However, legal consideration may deem this infeasible. An alternative policy is to make

the acceptances of early o¤ers not binding. Legally, this is already the case �any worker has

the right to resign. However, market norms and repeated games considerations often enforce

early agreements and therefore facilitate unraveling (see also [36]).

More generally, in evaluating any policy, one must keep in mind that the incentives of

workers and �rms may be con�icting. This raises an important question: should policies be

directed at preventing early o¤ers or early acceptances? Our model o¤ers a distinction between

worker- and �rm-driven unraveling, which should be handled di¤erently.13 To be precise, in

many entry-level labor markets, information about workers becomes more accurate over time.

Propositions 4 and 5 suggest that the time that workers spend in training institutions can be

divided into two time segments. In early training � is small and workers would accept any job

o¤er to insure themselves against unemployment. As a result, ��W ;�F ;M;� (
) 2 [0; 1] wherease��W ;�F ;M;� = 1. This worker-driven unraveling can be in�uenced by changes to �rms�incentives,
as the incentives of workers to contract early are too strong to be a¤ected. Closer to graduation,

� is large, and �rms try to hire any high signal worker, whereas workers decline less desirable

job o¤ers (for all 
 2 [0; 1], ��W ;�F ;M;� (
) = 1 whereas e��W ;�F ;M;� 2 [0; 1]). This �rm-driven
unraveling can be most e¤ectively in�uenced by policies that a¤ect workers�incentives.

8.3 Network structure

The paper provides comparative statics with respect to the e¤ect of the network structure on

unraveling. The design of policies that utilize these comparative statics requires a good model

of network formation or a notion of network stability. In the context of information sharing

networks regarding the qualities of job candidates, [14,15] propose a model of repeated games

in two-sided networks and explore the structure of networks that allow for truthful information

13The distinction between �rm- and worker-driven unraveling was suggested in [29] that focuses on the di¤erent
qualities of the �rms that trigger the unraveling process in each of the types of unraveling.
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to �ow via connections in the network. Their results suggest that the structure of the network

can be a¤ected by changes in the observability of the outcomes of interactions in the market.

For example, not revealing the identity of the recommender to competing �rms may impose a

restriction that the two-sided network be more sparse.

The current paper also challenges some previous misconceptions. For example, Proposition

2, and to some extent also Proposition 3, show that making communication of the early signal

more costly may not reduce unraveling.

9 Discussion

9.1 (In)�nite economies and networks

Even ignoring the underlying topology, solving for equilibrium behavior and outcomes in match-

ing markets under various market rules is often an intractable exercise. Partly for this reason

much of the matching literature focuses on equilibria in dominant strategies. In the context

of college admissions, [5] suggests in that solving for equilibrium behavior when there is a

continuum of agents on one side of the market is a much more tractable problem.

The introduction of networks poses additional complications. For example, computing the

expected number of workers hired early is a cumbersome operation. This is true even for highly

stylized network structures, agents�strategies, and market procedures. Moreover, solving for

the expected number of workers hired is not enough. In order to pin down equilibrium behavior,

the entire distribution of the number of workers hired early is needed.

In this paper, we derive results for "-equilibria (for arbitrarily small ") in asymptotically

large �nite networks. Solving for "-equilibria has the �avor of a continuum analysis because

exact equilibrium is only guaranteed to emerge when the size of the economy goes to in�nity.

In what follows we review and evaluate the simpli�cations provided by the focus on large �nite

networks and by the 0-equilibrium solution concept.

Focusing on large networks is done for the following reasons:

[1] If a network is su¢ ciently large, a strong random component in the selection of the network

guarantees that the network exhibits no degree correlation.

[2] Firms�costs of hiring early as well as workers�preferences and productivities are determined

by random processes. In large economies, the law of large numbers kicks-in, and predetermined
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smooth realization functions emerge.

[3] Combining 1. and 2., the fraction of workers hired early is a deterministic function of

�rms�and workers�strategies. Thus, at stage S = �1, �rms and workers ignore their private

information in evaluating their expected future payo¤from reaching the post-graduation market

unmatched.

While 2. is standard in the economics literature, 1. relies on graph theoretic results by [15].

Notably, from a graph theoretic perspective, the requirement that the network is large can be

relaxed if we are willing to restrict attention to speci�c families of networks. One such family

of networks includes all semi-regular networks � networks in which all �rms have the same

degree and all workers have the same degree (but not necessarily the same degree as �rms). In

semi-regular networks the degree correlation is zero by de�nition. Relaxing 2. is trickier; even

in semi-regular networks, the fraction of workers hired early is a complicated random function

of �rms�and workers�strategies. One way around it is by considering a large network that

consists of many copies of the same small network.

The 0-equilibrium solution concept guarantees that �rms do not lose more than " (for

arbitrary small ") by choosing the "-equilibrium action. We also know that the fractions of

�rms and workers who are required to make non-optimal decisions is zero in asymptotically

large economies. However, the distribution of �rms� early hiring costs is continuous, so we

cannot rule out that there is a marginal �rm which is indi¤erent whether it makes or does not

make an o¤er in an "-equilibrium. Such a �rm may be assigned a non-optimal action relative to

an exact equilibrium in any �nite economy. To determine whether an exact equilibrium exists

for �nite but large networks, one needs to know something about the speed of convergence

of the range of �rms�early hiring costs that require a deviation from optimal action in the

"-equilibrium. This may depends on the distributions of �rms�early hiring costs (D). Deriving

formally such a result requires a closed form expression for  G(nw;�W ;�F );M;� (
). Focusing on

0-equilibria provides a more tractable analysis.

In what follows we present two examples of the analysis of unraveling in simple �nite

economies. We use the examples to replicate two of the comparative statics of the in�nite

economies. Example 1 considers changes to the span of the network, whereas in example 2 we

consider changes in the network�s density. For simplicity, in both examples we restrict attention

to environment in which the unraveling is worker-driven, i.e. workers accept early o¤ers with

33



probability 1.

Example 1 The network in �gure 3b has a higher span than the network in �gure 3a. In both

networks if worker w1 receives a low signal, then �rm f1 will not �nd it pro�table to make an

early o¤er (at S = �1). Similarly, in both networks if w1 receives a high signal and is hired early

by �rm f1 then the expected payo¤ of f1 is ��H +(1� �)�L� cf . However, the expected payo¤

of f1 from not extending an early o¤er to a high signal w1 depends on the network structure.

�gure 3a

f2f1

w1 w2

f3

Firms

Workers

�gure 3b

f2f1

w1 w2

f3

Firms

Workers

Figure 3

In the network in �gure 3a, if w1 receives a high signal and is not hired early by �rm f1 then

a simple counting exercise shows that the expected payo¤ of f1 is
�
1
3
�+ 1

6

�
�H . Therefore, f1

makes an early o¤er to a high signal w1 if and only if ��H+(1� �)�L�cf �
�
1
3
�+ 1

6

�
�H . Now

consider the network in �gure 3b and suppose that conditional on w2 receiving a high signal, �rm

f2 makes an early o¤er with ex-ante probability �. Then, if w1 receives a high signal and is not

hired early by �rm f1 then the expected payo¤ of f1 is
�
1
3
�+ 1

6
� 1

12
��
�
�H . As a result, f1 makes

an early o¤er to a high signal w1 if and only if ��H + (1� �)�L � cf �
�
1
3
�+ 1

6
� 1

12
��
�
�H .

Plugging in a distribution D (for cf) we are able to solve for an equilibrium strategy ��. More

important, for any � > 0,
�
1
3
�+ 1

6
� 1

12
��
�
�H <

�
1
3
�+ 1

6

�
�H , so consistent with Proposition

1 the incentives of �rm f1 to make early o¤ers is greater in the network with the larger span.

Measuring the e¤ect of an increase in density on unravelling in �nite networks is less straight-

forward. In a small network, a �rm that is connected to more than one worker may have in-

centives to act di¤erently if one of its connected workers receives a high signal than if two of

its connected workers receive high signals. In large networks this e¤ect is eliminated. However,

studying large �nite network poses the di¢ culties reviewed above. To this end, in the following

example we perform the following restricted equilibrium analysis in �nite networks: holding

constant the strategies of all but one �rm, we evaluate the incentives of a �rm to make an early
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o¤er.

Example 2 Consider the networks in �gure 4 and suppose that �rms f2 and f3 follow the

same strategy: conditional on being connected to at least one worker who receives a high early

signal, make an early o¤er with probability � to one of the high signal workers (if more than

one such worker exists, choose a worker to make the o¤er to uniformly at random). Similar to

the previous example, in both networks if worker w1 receives a low signal, then �rm f1 does not

make an early o¤er (at S = �1). Also, in both networks, if w1 receives a high signal and is

hired early by �rm f1 then the expected payo¤ of f1 is ��H +(1� �)�L� cf . We now compare

the expected payo¤ of f1 from not extending an early o¤er to a high signal w1 in both networks.

�gure 4a

f2f1

w1 w2

f3

w3

Firms

Workers

f4

�gure 4b

f2f1

w1 w2

f3

w3

Firms

Workers

f4

Figure 4

Let � (kf ; kh; kl) be the expected payo¤ of a �rm that reaches unmatched a post-graduation

market (S = 0) with kf �rms, kh workers with high early signals, and kl workers with low

early signals. Then, in the network in �gure 4a, if f1 does not hire early a high signal

w1 then f1 has expected payo¤ of 14
�
�2� (2; 1; 0) + 2� (1� �)� (3; 2; 0) + (1� �)2 � (4; 3; 0)

�
+

1
2
[�� (3; 1; 1) + (1� �)� (4; 2; 1)] + 1

4
� (4; 1; 2). The corresponding value for the network in �g-

ure 4b is 1
4

�
�2
�
1
2
� (2; 1; 0) + 1

2
� (3; 2; 0)

�
+ 2� (1� �)� (3; 2; 0) + (1� �)2 � (4; 3; 0)

�
+

+1
2

�
(�2 + 2� (1� �))� (3; 1; 1) + (1� �)2 � (4; 2; 1)

�
+ 1

4
� (4; 1; 2). Therefore, the probability

that f1 makes an early o¤er in the network in �gure 4a is higher than in the network in �gure

4b if 1
2
�2 (� (3; 2; 0)� � (2; 1; 0))+2 (�2 � �) [� (4; 2; 1)� � (3; 1; 1)] > 0. Whether the inequality

holds depends on the parameters of the model.14 For example, in environments in which f2 and

f3 have strong incentives to make early o¤ers (high �) the inequality holds and the less dense

network in �gure 4a generates higher probability with which f1 makes early o¤ers. The opposite

is true in environments in which f2 and f3 have weak incentives to make early o¤ers (low �).

14Note that � (3; 2; 0)� � (2; 1; 0) > 0 and � (4; 2; 1)� � (3; 1; 1) > 0.
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9.2 Modeling decisions

Several restrictions are imposed by the structure of the model. The goal of this section is

twofold: [1] relate our key modeling decisions to the corresponding activity rules in markets

that motivate this paper, and [2] discuss the robustness of our results to alternative assumptions.

Our model abstracts from the wage determination process. The discussion of the role of

wages in the analysis of matching markets and of unraveling is not new. Models of matching

markets can be analyzed using the assignment model [25,42] where wages are a part of the

clearing mechanism, or using the marriage model [17] where wages are assumed out. We note

that allowing for wage heterogeneity across worker-�rm pairs does not a¤ect our analysis per

se �much of the wage heterogeneity can be incorporated into preferences. The substantiative

assumption is that wages do not vary with the timing of hiring. This assumption is supported

by evidence from the markets motivating this paper that is reviewed in section 2. For exam-

ple, wages in the market for judicial clerkships are regulated, and evidence reviewed from the

gastroenterology fellowships market and from the market for medical residencies suggests that

wages do not vary signi�cantly with the timing of hiring or with the matching procedure used.

Perhaps for that reason, [29] that analyzes unraveling using the assignment model in the con-

text of college admissions, admits that the assignment model analysis "applies with a greater

force to assignment markets in which payments transfers are explicitly negotiated�.

More important, our results are robust to the introduction of endogenous wages. To see

that, normalize the minimal wage to zero. We now take any wage determination rule in stage

S = 0 as given and consider a wage determination rule for the early o¤ers. Assume that when

�rms make early o¤ers a worker who receives at least one o¤er bargains on the wage with the

o¤ering �rms before deciding which o¤er to accept (if any). Assume further that the bargaining

process is e¢ cient, i.e., if there is a positive wage that is desireable both to the worker and to

one of the o¤ering �rms, then the worker accepts one of her o¤ers, and conditional on accepting

an o¤er, the worker always accepts the o¤er from the most preferred �rm that made her an

o¤er. Assume further that the bargaining process is label-free (depends only on the �rms�hiring

costs and the worker preferences). Then, the analysis of the endogenous wages model follows

directly from the analysis of the model studied in this paper with small modi�cations to the

probability that a worker accepts an early o¤er (�) and to the probability that a �rm makes an

36



early o¤er (�). More speci�cally, the modi�ed � is higher than the � in our model and so wage

bargaining generates weakly higher levels of unraveling. On the other hand, wage bargaining

has no direct e¤ect on �, which is a¤ected only indirectly via the increase in the number of

workers hired early (due to the increase in �).

Second, in our model each �rm hires at most one worker. This is realistic in several of the

markets motivating the paper. For example, in the market for judicial clerks, many judges hire

only one clerk per year. An alternative, more general model would also consider �rms with

multiple job openings. We note that as long as workers are substitutes, allowing �rms to hire

multiple workers does not alter our analysis of the post-graduation market (stage S = 0). The

analysis of the early hiring (stage S = �1) with the possibility of multiple hires depends on

the number of early o¤ers that �rms are able to make. If each �rm can make one early o¤er,

our analysis goes through with only minor changes. Allowing �rms to make a number of o¤ers

that is not much larger than the number of openings that they have introduces an additional

layer of complexity but does not change our results qualitatively.

A related assumption is that in stage S = �1 each �rm can make at most one o¤er. The

single o¤er assumption is a simpli�cation of the idea that the number of o¤ers that each �rm can

make early is bounded. This is motivated by the observation that making o¤ers and waiting for

a response takes time. In particular, recall the discussion in section 2 about the labor market

for MBA graduates, in which an early o¤er requires either a summer internship or at least an

interview. The restrictions dictated by schools on the timing of interviews and the constraint

posed by the need for a summer internship limit the number of early o¤ers that a �rm is able

to make. Additional examples are provided in [41]. In some cases, such as in the labor market

for MBA graduates, the constraint is exogenous, whereas in other examples the limiting factor

is that workers hold o¤ers until the deadline imposed by the �rms.

We now consider alternatives to the assumption that each �rm makes at most one early

o¤er. The closest extension is to assume a �xed and exogenous upper limit on the number of

early o¤ers each �rm can make. If this upper limit is binding, i.e., it is small enough relative to

the degrees of �rms in the network, then we do not expect any qualitative change to our results.

A second alternative is a large (i.e., on the order of magnitude of a �rm�s degree) upper limit

on the number of o¤ers that a �rm can make. The complete analysis under this assumption

is cumbersome and we cannot rule out some changes to our results with respect to the e¤ects

37



of changes in the degree distribution (Propositions 2 and 3). However, the non monotonicity

of Proposition 2 does not completely go away. To see that recall our discussion of the non

monotonicity after Proposition 2, and consider stage S = �1 as divided to two steps: in the

�rst step, the network is pruned by eliminating [1] all workers who receive low signals (sw = l);

and [2] all �rms that would not make early o¤ers at S = �1 even if they are connected to

workers who receive high signals. In the second step, the induced (pruned) network is analyzed

�each �rm that has at least one connection makes an o¤er to one of the workers connected to

it at random. Now suppose that we start with two networks of di¤erent initial densities. At the

end of the �rst step, the denser network remains (weakly) denser and has a (weakly) larger span.

In the second step we compare across networks that may di¤er in span and density, and that

include only �rms that make early o¤ers and workers who receive high signals. The e¤ect of the

di¤erence in span is independent of the assumption on the number of early o¤ers that each �rm

can make �in the network that has a larger span more workers are hired early. On the other

hand, with many early o¤ers the e¤ect of the di¤erence in density is complex. Nonetheless,

the following example demonstrates that increased density in the pruned network can decrease

unraveling, at least for some range of network densities �reminiscent of the corresponding e¤ect

when each �rm makes at most one early o¤er.

Example 3 Suppose that at the end of the �rst step (the pruning step) we are left with the

networks in �gure 5. For simplicity, assume further that any worker will accept immediately

an early o¤er from any of the �rms. Then, in �gure 5a all three workers are hired early with

probability 1, whereas in �gure 5b there is a positive probability that only two workers are hired,

e.g. if f1 makes its �rst o¤er to w2 and f2 makes its �rst o¤er to w3.

�gure 5a

f2f1

w1 w2

f3

w3

Firms

Workers

�gure 5b

f2f1

w1 w2

f3

w3

Firms

Workers

Figure 5
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A third approach calls for a more general market mechanism to operate in stage S = �1,

subject to the constraint that �rms can be matched early only with workers who are connected

to them. The general mechanism approach poses many technical di¢ culties because there

is no known mathematical framework to analyze the number of matchings generated by a

general matching algorithm that is constrained by a network structure, even for simple random

networks. For now we make the following observations. First, our result with respect to the

e¤ects of changes in the span of the network (Proposition 1), as well as our results with respect

to changes in the information accuracy and in the matching procedure (Propositions 5 and 4

respectively) are not qualitatively sensitive to the matching procedure used in stage S = �1.

On the other hand, our result with respect to the e¤ect of changes in the density of the network

(Proposition 2) is sensitive to the elimination of frictions in the hiring process in stage S = �1.

In particular, for an arbitrary matching procedure at S = �1, adding links to the network

(without increasing the span) can generate more or less early hiring depending on the matching

procedure used. For example, consider a matching mechanism that always picks a maximal

match subject to the constraint that only connected �rm and worker are matched. Then,

increasing a network�s density could not decrease (and generally would increase) the number of

worker-�rm pairs that are matched.

Finally, our analysis focuses on the role of information �ows from workers to �rms. We study

two-sided networks of connections between workers and �rms and do not consider connections

between �rms or between workers. This is not to say that no such connections exist. However,

same type connections must have a di¤erent role � it is generally not in the best interest of

a �rm to inform a competitor about the quality of a worker that it intends to hire. One role

of connections between �rms can be to coordinate on which �rm makes an o¤er to which of

the workers. Such collusive strategies can take many forms and are in general very complex.

Moreover, given that unraveling by competing �rms is payo¤ reducing to a �rm, collusive

strategies may be di¢ cult to enforce when the network of inter-�rm connections is very dense.

On the other hand, when the network of inter-�rm connections is sparse, a �rm might agree

to coordinate with the �rms connected to it as a part of a long term interaction. This is

because the e¤ect of the local coordination will not a¤ect overall unraveling in a large network.

We consider the topic of coordination between �rms in the hiring process and its e¤ect on
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unraveling to be an interesting topic for future research.15 Connections between workers may

also be of interest. If a connection between workers captures having a mentor in common, the

mentor can signal di¤erent qualities to di¤erent �rms, thus "coordinating" the �rms to make

non overlapping o¤ers to her mentees. A mentor may be incentivized to do so, because a �rm

may prefer to make an early o¤er to a worker based on information from such a mentor �

the mentee is more likely to have fewer competing o¤ers and more likely to accept the �rm�s

early o¤er. The consequences of such coordination are similar to the consequences of direct

coordination across �rms, yet it alleviates the incentive problems that may hinder coordination

between �rms.

10 Conclusion

This paper tackles the phenomenon of early hiring in entry-level labor markets in the presence

of social networks connecting employers and potential workers. To this end, we propose a

model of local interaction in which information �ows via connections in a network. While the

idea that social networks are used as a means of transferring information, and in particular

information related to job search, is widely accepted in the economic literature, it has not yet

been incorporated into the analysis of the timing of hiring in labor markets. Our model provides

a �rst step in this direction.

In our model the incentives of �rms to make early o¤ers depend on the aggregate level of

early hiring, which in turn depends on the entire network structure in complex ways. Thus, a

�rm�s best response depends on the �rm�s beliefs with respect to the entire network structure.

To overcome that we provide formal analysis of �rms�beliefs in large networks that are chosen

at random, and combine tools from graph theory, matching theory, and market design.

We �nd that the structure of the network a¤ects unraveling in systematic ways: [1] increasing

the span of the network leads to greater unraveling; [2] increasing a network�s density leads to

greater unraveling if the network has low density, whereas increasing a network�s density leads to

lesser unraveling if the network has high density; [3] increasing the variance of workers�degrees

leads to lesser unraveling; and [4] increasing the variance of �rms� degrees leads to greater

15The consequences of coordination across �rms in the context of a one-period market is considered in [27]:
�rms may interview similar or di¤erent subsets of workers, thus generating di¤erent two-sided networks between
�rms and workers in which a �rm can make an o¤er only to a worker connected to it.
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unraveling. Moreover, we show that improving the design of the post-graduation market by

improving the expected quality of the matching between workers and �rms leads to lesser

unraveling.

11 Appendix

11.1 Matching procedures - de�nitions

In the absence of a meaningful network, the analysis of stage S = 0 lends itself to the more
familiar analysis of one-to-one matching markets. Formally, let w0 and f0 be the null worker
and �rm.

De�nition 8 (Due to [40]) For a set of workers W 0 and a set of �rms F 0, a one-to-one
matching is a functionM : W 0 [F 0 ! W 0 [F 0 [ fw0; f0g such that w =M (f) if and only if
M (w) = f and for all w 2 W 0 and f 2 F 0:

� eitherM (w) 2 F 0 orM (w) = f0, and

� eitherM (f) 2 W 0 orM (f) = w0

Much of the matching literature focuses on �xed exogenous sets of workers and �rms with
perfect information. In our environment, the sets of workers and �rms that reach stage S = 0
unmatched (W 0

H ;W
0
L, and F 0) are determined endogenously in stage S = �1 and we are

required to de�ne a notion of a matching procedure. Intuitively, a matching procedure captures
the rules of the market which in turn determine the mapping from sets of workers and �rms to
a probability distribution over matchings. Denote the set of all subsets of a set A (the power
set of set A) by P (A).

De�nition 9 Let M (W 0; F 0) be the set of all one-to-one matchings over W 0 and F 0, and
let �

�
M (W 0; F 0)

�
be the set of all probability distributions on elements of M (W 0; F 0). A

matching procedure is a function M : P (W 0)� P (F 0)! �
�
M (W 0; F 0)

�
.

We now de�ne the notions of anonymous matching procedures and of matching procedures
that guarantee weakly stable matchings.

De�nition 10 Let U �
�
uw1 ; uw2 ; :::; uwjW 0j

�
and U 0 �

�
u0w1 ; u

0
w2
; :::; u0wjW 0j

�
be two pro�les of

workers� utility functions such that for some i 6= j, uwi = u0wj and uwj = u0wi and for any

k =2 fi; jg, uwk = u0wk . Let U
00 �

�
u00w1 ; u

00
w2
; :::; u00wjW 0j

�
be a pro�le of workers�utility functions

such that there exist two �rms f 0 and f 00 such that: (1) for every j, uwj (f
0) = u00wj (f

00) and
uwj (f

00) = u00wj (f
0); and (2) for every f 2 Fn ff 0; f 00g and for every j, uwj (f) = u00wj (f). A

matching procedure is anonymous if for every W 0 � W and F 0 � F and in every matching
M that has a positive probability given the matching procedure the following holds:16

16A matching procedure is anonymous if it depends only on the preferences of workers�and �rms�and not
on their labels or position in the network. Because �rms�payo¤ functions are identical at stage S = 0, the
outcome of an anonymous matching procedure will depend only on the workers�preferences as captured by the
de�nition.
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1. for any f 2 F 0, Pr [M (wi) = f jU ] = Pr [M (wj) = f jU 0] and for any k =2 fi; jg,
Pr [M (wk) = f jU ] = Pr [M (wk) = f jU 0].

2. for any w 2 W , Pr [M (w) = f 0jU ] = Pr [M (w) = f 00jU 00] and for every f 2 F 0n ff 0; f 00g,
Pr [M (w) = f jU ] = Pr [M (w) = f jU 00].

De�nition 11 A matching procedure guarantees a weakly stable matching if for every W 0

and F 0 and in every matching M that has a positive probability given the matching procedure
the following holds: [1] for any w 2 W 0 and f 2 F 0 such thatM (w) = f , uw (�jM (w) = f) �
uw (�jM (w) = f0) and �f (�jM (f) = w) � �f (�jM (f) = w0) (for any matched worker and
�rm, both prefer to be matched to the other than be unmatched); and [2] for any w 2 W 0 and
f 2 F 0 such that M (w) = f0 and M (f) = w0, uw (�jM (w) = f0) > uw (�jM (w) = f) or
�f (�jM (f) = w0) > �f (�jM (f) = w) (for any unmatched worker and �rm, at least one of
them prefers not to be matched to the other).

11.2 Derivation of e��W ;�F ;M;� (
)
Consider �rms�best responses as captured by (9) and suppose further (hypothetically) that

for any �rm f , EG(nw;�W ;�F );M;� [�f ] =
jW 0

Hj
jF 0j � �H . Then, (9) becomes

e��W ;�F ;M;� (
) = D�� � �H + (1� �) � �L � E

�
jW 0

H j
jF 0j

�
� �H

�
: (18)

Moreover,

E

�
jW 0

H j
jF 0j j


�
=

�
1
2
� � � 


�
� nw

nf � 
 � nw
=

1
2
� � � 
P1

r=0 �W (r)�rP1
r=0 �F (r)�r

� 

:

To see why the second equality holds, note that for nw; nf ; �W (r) ; �F (r) to be consistent with
a network structure, it must hold that nw

nf
=

P1
r=0 �F (r)�rP1
r=0 �W (r)�r

.
Therefore, (18) can be rewritten as

e��W ;�F ;M;� (
) = D
0@� � �H + (1� �) � �L �

1
2
� � � 
P1

r=0 �W (r)�rP1
r=0 �F (r)�r

� 

� �H

1A
11.3 Proofs

Lemma 2 Let h�W ; �F ; �i exhibit scarcity of high productivity workers, and let bG (�W ; �F ; nw)
be any network that is consistent with �W ; �F and nw. Assume further that no worker who

receives a low signal at S = �1 is hired early. Let n bG(�W ;�F ;nw)w (H; 0; �) be a random variable
(r.v.) that captures the number of workers of high productivity that are not hired at S = �1 and
let n

bG(�W ;�F ;nw)
f (0; �) be a r.v. that captures the number of �rms that did not hire at S = �1.

Then, there exist � > 0 such that

Pr

0@limnw!1
n
bG(�W ;�F ;nw)
f (0; �)� n

bG(�W ;�F ;nw)
w (H; 0; �)

nw
> �

1A = 1
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Proof. Let p�1;nww (sw) be a r.v. that captures the proportion of workers that receive a sig-
nal sw at S = �1, and let p0;nww (sw; H) be a r.v. that captures the proportion of work-
ers that receive a signal sw at S = �1 AND are revealed to be of high productivity in
stage S = 0. Let 
 bG(�W ;�F ;nw) (�) be a r.v. that captures the number of workers hired at

S = �1. Let p0;
bG(�W ;�F ;nw)

w (H; 0) be a r.v. that captures the proportion of workers that
are of high productivity and are not hired at S = �1 (as a proportion of nw). Finally, let

p
bG(�W ;�F ;nw)
f (�) = n

bG(�W ;�F ;nw)
f (0;�)

nf
be the r.v. that captures the proportion of �rms that are not

matched before S = 0. Then,

p0;
bG(�W ;�F ;nw)

w (H; 0) � p0;nww (l; H) + p�1;nww (h)� 

bG(�W ;�F ;nw) (�)

nw
(19)

where the inequality holds because p�1;nww (h)� 

bG(�W ;�F ;nw)(�)

nw
is the proportion of workers who

receive high signal and are not hired at S = �1. This equals the proportion of workers who
receive high signal, are of high productivity, and are not hired at S = �1, only if all of the high
signal workers who are not hired at S = �1 are also of high productivity.
By the strong law of large numbers

Pr

�
limnw!1p

�1;nw
w (h) =

1

2

�
= 1; Pr

�
limnw!1p

0;nw
w (l; H) =

1� �

2

�
= 1

Thus, inequality (19) implies that,

Pr

 
limnw!1

 
p0;

bG(�W ;�F ;nw)
w (H; 0)�

"
1� �

2
+
1

2
� 


bG(�W ;�F ;nw)
nw

#!
� 0
!
= 1 (20)

By the assumption of scarcity of high productivity workers for every
D bG (nw; �W ; �F ) ; �E

there exists � > 1 such that nf > � �
�
1� �

2

�
� nw. Consequently,

nf � p
bG(�W ;�F ;nw)
f (�) = nf � 


bG(�W ;�F ;nw) > � �
�
1� �

2

�
� nw � 


bG(�W ;�F ;nw) (21)

Combining (20) and (21) and some algebra yields that there exists � > 1 such that,

Pr

0@limnw!1
nf � p

bG(�W ;�F ;nw)
f (�)� nw � p0;

bG(�W ;�F ;nw)
w (H; 0)

nw
> (� � 1) �

�
1� �

2

�1A = 1

since by de�nition n
bG(�W ;�F ;nw)
f (0; �) = nf �p

bG(�W ;�F ;nw)
f (�), n bG(�W ;�F ;nw)w (H; 0; �) = nw�p0;

bG(�W ;�F ;nw)
w (H; 0),

and since (� � 1) �
�
1� �

2

�
> 0, the proof is complete.

Lemma 1 - Proof. The proofs of part 1-(a) and the second claim in part 1-(b) of the
Lemma are immediate from the de�nitions above. The proof of the �rst claim in part 1-(b)
follows from Lemma 2 � if there are more �rms than high quality workers at S = 0, then
independence across workers� preferences implies that in an asymptotically large market all
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high quality workers are matched in any weakly stable matching, and that �rms have identical
expected payo¤s given any anonymous matching procedure. The proof for part 2 of the Lemma
is as follows:
Let z (w;F 0; �; �) � ff 2 F 0j j�wf � � � �j < �g and denote the empty set by ?. For given

� 2
�
max

�
0; �

�

	
; 1
�
, and � > 0 consider the following algorithm:

Let W = W 0
H and F = F 0

While W 6= ? and F 6= ?
Select w 2 W uniformly at random

If z (w;F ; �; �) 6= ?
Pick a �rm f 2 z (w;F ; �; �) uniformly at random
Match w to f
Let W =Wnw and F = Fnf

Otherwise
Pick a �rm f 2 F uniformly at random
Match w to f
Let W =Wnw and F = Fnf

The algorithm matches a �rm and a worker at every iteration and therefore always stops
when either W 6= ? or F 6= ? and provides a weakly stable matching. The probability
distribution over the outcomes of the algorithm is a matching procedure M (W 0; F 0). The
anonymity of the procedure is directly implied by the randomness in the selection of the worker
and the �rm out of the relevant sets.
It is left to show that for every w 2 W that is selected by the algorithm and any F that is

reached by the algorithm given a network bG (�W ; �F ; nw),
limnw!1Pr [z (w;F ; �; �) 6= ?] = 1

Let n
bG(�W ;�F ;nw)
w (H; 0) be a r.v. that captures the number of workers of high productivity

that are not hired at stage S = �1 and let n bG(�W ;�F ;nw)f (0) be a r.v. that captures the number
of �rms that did not hire at stage S = �1. Then, by Lemma 2 there exists � > 0 such that

Pr

0@limnw!1
n
bG(�W ;�F ;nw)
f (0; �)� n

bG(�W ;�F ;nw)
w (H; 0; �)

nw
> �

1A = 1

Let jAj be the number of elements in a set A. For any nw and at every iteration of the
algorithm, jFj � n

bG(�W ;�F ;nw)
f (0; �) � n

bG(�W ;�F ;nw)
w (H; 0; �), and this holds with equality only

when the last worker ew 2 W is chosen by the algorithm. As a result, there exists � > 0 such
that when a random worker w 2 W is chosen by the algorithm

Pr

�
limnw!1

jFj
nw

> �

�
= 1

or
Pr (limnw!1 jFj > � � nw) = 1
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To complete the proof, �x � > 0 and � > 0, and consider a randomly selected worker ew and
a set eF (nw) of � �nw �rms that is chosen independently of the worker�s preferences. Let B (nw)
be the event that there is no �rm ef 2 eF (nw) such that ���� ew ef � (� � �)��� < �. Recall that � ew ef is
distributed H with positive density in every point in the support [�; �]. Then,

Pr (B (nw)) = (1� [H (� � � + �)�H (� � � � �)])��nw

and
limnw!1Pr (B (nw)) = 0

It is only left to recall that when there is no �rm ef 2 eF (nw) for which ���� ew ef � � � �
��� < �,

� ewf is bounded.
De�nition 12 For two random variables (r.v.) X; Y with support on some countably in�nite
set X , the total variational distance betweenX and Y , TV D(X; Y ), is de�ned as

P
x2X jPr(X =

x)� Pr(Y = x)j.

For a distribution over networks �G let b
F
(r;�G) be the random vector of length r chosen

as follows: [1] choose a network G according to �G, [2] choose a worker with degree r u.a.r.
from all workers with degree r in G, and [3] let b

F
(r;�G) be the vector of the degrees of all

�rms in Nw ordered randomly (with equal probability given to each ordering). Let b
0F
(r; �F ) be

a vector of length r such that for every i 2 f1; 2; :::; rg, b0Fi equals r0 with probability eP F (r0; �F )
and such that

n
b
0F

i

o
i2f1;2;:::;rg

are determined independently of each other.

Lemma 3 (Due to [15]) For all r and �nite support �W ; �F ,

lim
nw!1

TV D
���bF (r;G (nw; �W ; �F )) ; b0F (r; �F )��� = 0

Lemma 4 Let �W ; �F have �nite support and h�W ; �F ; �i exhibit scarcity of high productivity
workers. Consider a market procedure M that is parameterized by �M 2 [0; 1]. Assume that
all �rms employ label-free strategies. Finally, let  G(nw;�W ;�F );M;� (b
) be the r.v. that captures
the fraction of workers hired at S = �1 if all �rms and workers best respond to the belief that

 = b
. Then, for every � > 0 and b
 2 [0; 1]

limnw!1 Pr
���� G(nw;�W ;�F );M;� (b
)� e �W ;�F ;M;� (b
)��� < �

�
= 1

Proof. Following condition (3), a worker w has a positive probability to be hired at S = �1
only if sw = h and rw � 1. Consider a network G. Select worker w u.a.r. and then select a
�rm f 2 Nw u.a.r. Let �G;M;� (
) be the probability that f makes an early o¤er to w if sw = h.
Recall that the realization (qw; sw) is independent of anything else, then by combining Lemma
3 and the limit result in Lemma 1-(1)-(b), and repeating the algebra at the bottom of section
11.2 we get that

limnw!1�G(nw;�W ;�F );M;� (
) = e� �W ;�F ;M;� (
) :
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Note also that by Lemma 1 and De�nition 2, for any W 0
H ;W

0
L; F

0 that are possible under the
assumptions above and for any � > 0

limnw!1 supw
��EG(nw;�W ;�F );M;� �uwjH;W 0

H ;W
0
L; F

0
�
� �M � �

�� < �

and therefore
limnw!1�G(nw;�W ;�F );M;� (
) = e��W ;�F ;M;�

which in turn, together with the independence of f�wfgf2F and Lemma 3 imply that as nw !1
the probability that w receives at least one early o¤er (at S = �1) that she would like to accept,
conditional on sw = h, converges to

1�
�
(1� e� �W ;�F ;M;� (
)) + e� �W ;�F ;M;� (
) � �1� e��W ;�F ;M;���rw

For a given graph G let bwh (G) be a r.v. that captures the number of workers in the setcWh (G) = fw 2 W jrw � 1 and sw = hg and let xW (G) = bwh(G)
nw

. Let PcW (�jG) be the degree
distribution of workers in cWh (G). The probability that a randomly chosen worker w 2 cWh (G)
is hired is

1X
rw=1

P
cW (rwjG) �1� �(1� �G;M;� (
)) + �G;M;� (
) �

�
1� �G;M;� (
)

��rw�
The proof is then completed by applying the strong law of large numbers twice to establish

that
(1) Pr

�
limnw!1xW (G) =

1
2
� (1� �W (0))

�
= 1; and

(2) for any r, Pr
�
limnw!1P

cW (rjG (nw; �W ; �F )) = P (r; �W )
�
= 1.

Theorem 1 - Proof. By the convexity of the support for 
 and the continuity ofe �W ;�F ;M;� (
) a �xed point exists. We now show that if 
� = e �W ;�F ;M;� (
�) then 
� is a
0-equilibrium with h�W ; �F ;M; �i. The proof goes in two steps. First, Lemma 4 implies that for
any � > 0 there exists nw such that for any n0w > nw, Pr

�
 G(nw;�W ;�F );M;� (


�) 2 [
� � �; 
� + �]
�
>

1� �.
Second, we show that for any " > 0 there exists � such that for any � 0 < �, workers�and �rms�

best responses for 
� satisfy the conditions for an "-equilibrium for any 
 2 [
� � � 0; 
� + � 0].
This follows from Lemma 1, the continuity of limnw!1EG(nw;�W ;�F );M;� [�f ] in 
, and the in-
dependence of limnw!1EG(nw;�W ;�F );M;� [uw] of 
. Since the payo¤s of workers and �rms are
bounded, this completes the proof that if 
� = e �W ;�F ;M;� (
�) then 
� is a 0-equilibrium with
h�W ; �F ;M; �i.
We are left to show that if 
� is a 0-equilibriumwith h�W ; �F ;M; �i then 
� = e �W ;�F ;M;� (
�).

Assume by contradiction that 
� = e �W ;�F ;M;� (
�) + { for some { 6= 0. Then by Lemma 4
and following the argument above, for any � > 0 there exists nw such that for any n0w > nw,
Pr
�
 G(nw;�W ;�F );M;� (


�) 2 [
� + { � �; 
� + { + �]
�
> 1� �.

As a result, there exist �1 > 0 and nw such that for any n0w > nw,
Pr
�
 G(nw;�W ;�F );M;� (


�) 2 [
� � �1; 

� + �1]

�
� �1 < 1 � �1, contradiction to 


� being a 0-
equilibrium.
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Proposition 1 - Proof. We rely on Corollary 1 and prove the Proposition by showing
that for every 
 2 [0; 1], e �1W ;�1F ;M;� (
) � e �2W ;�2F ;M;� (
).
Since for all r � 1, P

�
r; �1W

�
= P

�
r; �2W

�
and P

�
r; �1F

�
= P

�
r; �2F

�
, we have that

P1
r=0 �

1
F (r)�rP1

r=0 �
1
W (r)�r

=P1
r=0 �

2
F (r)�rP1

r=0 �
2
W (r)�r

and also that for all r � 1, eP �r; �1F � = eP �r; �2F �. Thus, for every 
 2 [0; 1],
��1W ;�1F ;M;� (
) = ��2W ;�2F ;M;� (
) ; e� �1W ;�1F ;M;� (
) = e� �2W ;�2F ;M;� (
) ; and e��1W ;�1F ;M;� = e��2W ;�2F ;M;�
Then, by the de�nition of e �W ;�F ;M;� (expression 14), the di¤erence in �W implies that for

every 
 2 [0; 1], e �1W ;�1F ;M;� (
) � e �2W ;�2F ;M;� (
)
as required.

Proposition 2 - Proof. First, note that
D
��

L

W ; �
�L

F ;M; �
E
and

D
��

H

W ; ��
H

F ;M; �
E
are by de-

�nition regular environments, and note that for every h��W ; �
�
F ;M; �i and 
,

@�
�
�
W
;�
�
F
;M;�

(
)

@�
= 0

and
@e�

�
�
W
;�
�
F
;M;�

(
)

@�
= 0. In regular environments, we can rely on Corollary 1 and prove the

Proposition by showing that there exists r; r 2 Z+ such that ifmax
�
�H � rj�F (r) > 0

	
< r thene 

��
H

W ;��
H

F ;M;�
(
) � e 

��
L

W ;��
L

F ;M;�
(
), and ifmin

�
�L � rjr � 1; �F (r) > 0

	
> r, then e 

��
H

W ;��
H

F ;M;�
(
) �e 

��
L

W ;��
L

F ;M;�
(
).

To reduce the notation that we carry throughout the proof, �x �W ; �F ;M; �, and 
 and lete � = e ��W ;��F ;M;� (
), e� � = e� ��W ;��F ;M;� (
), � = ���W ;�
�
F ;M;�

(
), e� = e���W ;��F ;M;�, and x = � � e�. We
can drop the 
 argument since a claim of greater di¤usion is proved by a shift in e ��W ;��F ;M;� (
)
for every 
 2 [0; 1] and since � and e� (and x) are independent of � and therefore can be treated
of as exogenous for a given 
. Substituting in the de�nitions of e� and x and some algebra
yields,

e � =
1

2
� (1� �W (0)) �

1X
rw=1

P (rw; �W ) � (1� [1� e� � + e� � � (1� e�)]��rw) (22)

=
1

2
� (1� �W (0))�

1

2
� (1� �W (0)) �

1X
rw=1

P (rw; �W ) �

�

241� x �

8<:
1X
rf=1

eP (rf ; �F ) � [(1� 0:5��rf ) = (0:5 � � � rf )]
9=;
35��rw (23)

and
@e �
@�

= �1
2
� (1� �W (0)) �

1X
rw=1

P (rw; �W ) �
@'� (rw)

@�
(24)

where

'� (rw) =

241� x �

8<:
1X
rf=1

eP (rf ; �F ) � [(1� 0:5��rf ) = (0:5 � � � rf )]
9=;
35��rw (25)
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Let '� (rw; rf ) = [1� x � [(1� 0:5��rf ) = (0:5 � � � rf )]]��rw . We note three important facts:

1. '� (rw) and '� (rw; rf ) are twice di¤erentiable.

2. If
@'�(rw;r)

@�
� 0

�
@'�(rw;r)

@�
< 0
�
for every r 2 R+ in the convex hull of frf j�F (rf ) > 0g,

then
@'�(rw)

@�
� 0

�
@'�(rw)

@�
< 0
�
.

3. sign
�
@'�(rw;rf)

@�

�
= sign

�
@ ln('�(rw;rf))

@�

�
.

Thus to prove Proposition 2 it is su¢ cient to show that:

� Step 1: H [� � � � �] > 1
3
implies that '2 (rw; 1) � '1 (rw; 1).

� Step 2: there exists � (M;�) 2 Z+ such that for all � � � (M;�) and any rw > 0,
@ ln('�(rw;1))

@�
� 0.

The proof of Step 1 follows a direct comparison of '2 (rw; 1) and '1 (rw; 1).

'2 (rw; 1)

'1 (rw; 1)
=
[1� 0:75 � x]2�rw

[1� x]rw
=

 
[1� 0:75 � x]2

1� x

!rw
(26)

To conclude that '2(rw;1)
'1(rw;1)

� 1 as required, we note that if H [� � � � �] > 1
3
, then e� < 2

3
and

� � 1, so that x < 2
3
. Therefore,

@ [1�0:75�x]
2

1�x
@x

=
�0:5 + 0:75 � x
(1� x)2

� (1� 0:75 � x) < 0 (27)

and �
'2 (rw; 1)

'1 (rw; 1)
jx = 0

�
= 1 (28)

imply that '2(rw;1)
'1(rw;1)

� 1 and '2 (rw; 1) � '1 (rw; 1) which concludes the proof of Step 1.
We now prove Step 2. We start by taking the derivative of

ln
�
'� (rw; 1)

�
= � � rw � ln [1� x � (1� 0:5�) = (0:5 � �)] (29)

which with some algebra amounts to

@ ln
�
'� (rw; 1)

�
@�

= rw � ln [1� x � (1� 0:5��r) = (0:5 � � � r)] + (30)

+
[x � � � rw � ln (0:5) � 0:5��r � r + x � rw � x � rw � 0:5��r]

0:5 � � � r � x+ x � 0:5��r (31)

Thus, for any rw > 0,
@ ln('�(rw;1))

@�
� 0 whenever

ln [1� x � [(1� 0:5�) = (0:5 � �)]] + [x � � � ln (0:5) � 0:5
� + x� x � 0:5�]

0:5 � �� x+ x � 0:5� � 0 (32)
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In Step 2, we are interested in the sign of
@ ln('�(rw;1))

@�
for large �. For any x and for any

� � 2, 0:5 � �� x+ x � 0:5� > 0, so inequality (32) holds if and only if

(0:5 � �� x+ x � 0:5�)�ln [1� x � [(1� 0:5�) = (0:5 � �)]]+x���ln (0:5)�0:5�+x�x�0:5� � 0 (33)

With some additional algebra we get that inequality (32) holds if and only if

2�f(0:5���x) ln[1�x�(1�0:5�)=(0:5��)]+xg
�

� x�ln[1�x�(1�0:5�)=(0:5��)]+x���ln(0:5)�x
�

(34)

where

lim�!1
x � ln [1� x � (1� 0:5�) = (0:5 � �)] + x � � � ln (0:5)� x

�
= x � ln (0:5) <1 (35)

Consequently, a su¢ cient condition for inequality (32) to hold is

lim�!1
2� f(0:5 � �� x) ln [1� x � [(1� 0:5�) = (0:5 � �)]] + xg

�
=1 (36)

Also,
2�f(0:5���x) ln[1�x�[(1�0:5�)=(0:5��)]]+xg

�
=

= 2�
n�
0:5� x

�

�
ln [1� x � [(1� 0:5�) = (0:5 � �)]] + x

�

o
� 2�

n�
0:5� x

�

�
ln [1� x � [(1) = (0:5 � �)]] + x

�

o
= 2��1

n�
1� 2x

�

�
ln
h
1� 2x

�

i
+ 2x

�

o
= 2��1

�2

n
� (�� 2x) ln

h
1� 2x

�

i
+ 2x�

o
and

lim�!1� (�� 2x) ln
�
1� 2x

�

�
+ 2x� = 2x2

lim�!1
2��1

�2
= 1

As a result, condition (36) is satis�ed for any x > 0, and inequality (32) holds for any x � 0
as required.

Proposition 3 - Proof. We rely on Corollary 1 and prove the Proposition by showing
that for every 
 2 [0; 1], e �1W ;�1F ;M;� (
) � e �2W ;�2F ;M;� (
).
The proof goes in 3 short steps. First, by the de�nition of MPS,

P1
r=0 �

1
F (r)�rP1

r=0 �
1
W (r)�r

=
P1
r=0 �

2
F (r)�rP1

r=0 �
2
W (r)�r

.
Therefore, for every 
 2 [0; 1],

��1W ;�1F ;M;� (
) = ��2W ;�2F ;M;� (
) and e��1W ;�1F ;M;� = e��2W ;�2F ;M;�
Second, by the convexity and negative monotonicity of (1� 0:5r) = (0:5 � r) in r, for every


 2 [0; 1], e� �1W ;�1F ;M;� (
) � e� �2W ;�2F ;M;� (
)
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Finally,
�
1�

�
1� e� �W ;�F ;M;� (
) + e� �W ;�F ;M;� (
) � �1� e��W ;�F ;M;���rw� is increasing in e� �W ;�F ;M;�

and increasing and concave in rw. Thus, for every 
 2 [0; 1],

e �1W ;�1F ;M;� (
) � e �2W ;�2F ;M;� (
)
which completes the proof.

Proposition 4 - Proof. We rely on Corollary 1 and prove the Proposition by showing
that for every 
 2 [0; 1], e �W ;�F ;M1;� (
) � e �W ;�F ;M1;� (
). By de�nition, for every 
 2 [0; 1],

��W ;�F ;M1;� (
) = ��W ;�F ;M2;� (
) ; e� �W ;�F ;M1;� (
) = e� �W ;�F ;M2;� (
) ; and e��W ;�F ;M1;� � e��W ;�F ;M2;�

Finally,
�
1�

�
1� e� �W ;�F ;M;� (
) + e� �W ;�F ;M;� (
) � �1� e��W ;�F ;M;���rw� is decreasing in e��W ;�F ;M;�.

Thus, for every 
 2 [0; 1], e �W ;�F ;M1;� (
) � e �W ;�F ;M2;� (
)

which completes the proof.

Proposition 5 - Proof. We rely on Corollary 1 and prove the Proposition by showing
that: [1] if �2 � �

�M ��
then for every 
 2 [0; 1], e �W ;�F ;M;�2 (
) � e �W ;�F ;M;�1 (
), and [2] if

�1 �
c+

1
2P1

r=0 �W (r)�rP1
r=0 �F (r)�r

�

��H��L

�H��L+ 
P1
r=0 �W (r)�rP1
r=0 �F (r)�r

�

��H for all 
 2 [0; 1], then for every 
 2 [0; 1], e �W ;�F ;M;�1 (
) �

e �W ;�F ;M;�2 (
).
Part 1: Recall that e��W ;�F ;M;� = 1�H [� � �M � �] and that H has the support [�; �] where

� > 0. Let �2 � �
�M ��

, thus �i � �M � � � � for i = 1; 2, and e��W ;�F ;M;�1 = e��W ;�F ;M;�2 = 1.
Recall that by de�nition, for every 
 2 [0; 1],

��W ;�F ;M;�2 (
) � ��W ;�F ;M;�1 (
) and e� �W ;�F ;M;�2 (
) � e� �W ;�F ;M;�1 (
)
implying that for every 
 2 [0; 1], e �W ;�F ;M;�2 (
) � e �W ;�F ;M;�1 (
).
Part 2: Recall that ��W ;�F ;M;� (
1) = D

 
� � �H + (1� �) � �L �

1
2
���
1P1

r=0 �W (r)�rP1
r=0 �F (r)�r

�
1
� �H

!
and

that D has the support [c; c]. Let �1 �
c+

1
2P1

r=0 �W (r)�rP1
r=0 �F (r)�r

�

��H��L

�H��L+ 
P1
r=0 �W (r)�rP1
r=0 �F (r)�r

�

��H for all 
 2 [0; 1]. Thus for every


 2 [0; 1], �i � �H + (1� �i) � �L �
1
2
��i�
P1

r=0 �W (r)�rP1
r=0 �F (r)�r

�

� �H � c for i = 1; 2, and

��W ;�F ;M;�2 (
) = ��W ;�F ;M;�1 (
) = 1 and e� �W ;�F ;M;�2 (
) = e� �W ;�F ;M;�1 (
) = 1X
rf=1

eP (rf ; �F )�(1� 0:5rf )
0:5 � rf

Recall that by de�nition e��W ;�F ;M;�2 � e��W ;�F ;M;�1 implying that for every 
 2 [0; 1], e �W ;�F ;M;�2 (
) �e �W ;�F ;M;�1 (
).
50



12 References

[1] A. Abdulkadiroglu, T. Sonmez, Random serial dictatorship and the core from random en-
dowments in house allocation problems, Econometrica 66 (1998), 689-701.
[2] A. Abdulkadiroglu, T. Sonmez, House allocation with existing tenants, J. Econ. Theory

88 (1999), 233�260.
[3] C. Avery, C. Jolls, R.A. Posner, A.E. Roth, The Market for Federal Judicial Law Clerks,

The Univ. of Chicago Law Review 68 (2001), 793-902.
[4] C. Avery, C. Jolls, R.A. Posner, A.E. Roth, The New Market for Federal Judicial Law

Clerks, The Univ. of Chicago Law Review 74 (2007), 447-486.
[5] E. Azevedo, J.D. Leshno, A Supply and Demand Framework for Two-Sided Matching

Markets, working paper, 2012.
[6] C. Ballester, A. Calvó-Armengol, Y. Zenou, Who�s Who in Networks. Wanted: The Key

Player, Econometrica 74 (2006), 1403-1417.
[7] T.F. Bewley, Why Wages Don�t Fall During a Recession, Harvard Univ. Press, Cam-

bridge, MA, 1999.
[8] Y. Bramoullé, M. D�Amours, R. Kranton, Strategic Interaction and Networks, working

paper, 2010.
[9] J. Bulow, J. Levin, Matching and Price Competition, Amer. Econ. Rev. 96 (2006),

652-668.
[10] A. Calvo-Armengol, M.O. Jackson, The E¤ects of Social Networks on Employment and

Inequality, Amer. Econ. Rev. 94 (2004), 426-454.
[11] A. Calvo-Armengol, Y. Zenou, Job matching, social network and word-of-mouth com-

munication, J. Urban Econ. 57 (2005), 500-522.
[12] V.P. Crawford, The Flexible-Salary Match: A Proposal to Increase the Salary Flexibility

of the National Resident Matching Program, J. Econ. Behav. Organ. 66 (2008), 149-160.
[13] E. Damiano, H. Li, W. Suen, Unravelling of Dynamic Sorting, Rev. Econ. Stud. 72

(2005), 1057-1078.
[14] I.P. Fainmesser, Community Structure and Market Outcomes: a Repeated Games in

Networks Approach, American Economic Journal: Microeconomics 4 (2012), 32-69.
[15] I.P. Fainmesser, D.A. Goldberg, Cooperation in Partly Observable Networked Markets,

working paper, 2012.
[16] G.R. Fréchette, A.E. Roth, U.M. Ünver, Unraveling yields ine¢ cient matchings: evi-

dence from post-season college football bowls, RAND J. Econ. 38 (2007), 967�982.
[17] D. Gale, L. Shapley, College Admissions and the Stability of Marriage, Amer. Mathe-

matical Monthly 69 (1962), 9-15.
[18] A. Galeotti, S. Goyal, M.O. Jackson, F. Vega-Redondo, L. Yariv, Network Games, Rev.

Econ. Stud. 77 (2010), 218-244.
[19] M.S. Granovetter, Getting A Job: A Study of Contacts and Careers, Harvard Univ.

Press, Cambridge, MA, 1974.
[20] C. Greenhill, B.D. McKay, X. Wang, Asymptotic enumeration of sparse 0�1 matrices

with irregular row and column sums, J. Combinatorial Theory, Series A 113 (2006), 291-324.
[21] H.W. Halaburda, Unravelling in Two-Sided Matching Markets and Similarity of Pref-

erences, Games Econ. Behav. 69 (2010), 365-393.
[22] M.O. Jackson, B.W. Rogers, Meeting Strangers and Friends of Friends: How Random

are Socially Generated Networks? Amer. Econ. Rev. 97 (2007), 890-915.

51



[23] J.H. Kagel, A.E. Roth, The Dynamics of Reorganization in Matching Markets: A
Laboratory Experiment Motivated by a Natural Experiment, Quart. J. Econ. 115 (2000),
201-235.
[24] F. Kojima, Matching and Price Competition: Comment, Amer. Econ. Rev. 97 (2007),

1027-1031.
[25] T.C. Koopmans, M. Beckmann, Assignment Problems and the Location of Economic

Activities, Econometrica 25 (1957), 53-76.
[26] A. Kozinski, Confessions of a Bad Apple, The Yale Law Journal, 100 (1991), 1707-1730.
[27] R. Lee, M. Schwarz, Interviewing in Two-Sided Matching Markets, working paper, 2012.
[28] H. Li, S. Rosen, Unraveling in Matching Markets, Amer. Econ. Rev. 88 (1998), 371-87.
[29] H. Li, W. Suen, Risk Sharing, Sorting, and Early Contracting, J. Polit. Economy 108

(2000), 1058-1087.
[30] J.D. Montgomery, Social Networks and Labor-Market Outcomes: Toward an Economic

Analysis, Amer. Econ. Rev. 81 (1991), 1407-18.
[31] M. Niederle, Competitive Wages in a Match with Ordered Contracts, Amer. Econ.

Rev. 97 (2007), 1957-1969.
[32] M. Niederle, L. Yariv, Decentralized Matching with Aligned Preferences, working paper,

2009.
[33] M. Niederle, A.E. Roth, Unraveling Reduces Mobility in a Labor Market: Gastroen-

terology with and without a Centralized Match, J. Polit. Economy 111 (2003), 1342-1352.
[34] M. Niederle, A.E. Roth, Relationship Between Wages and Presence of a Match in

Medical Fellowships, Journal of the American Medical Association 290 (2003), 1153-1154.
[35] M. Niederle, A.E. Roth, The Gastroenterology Fellowship Market: Should There Be a

Match? Amer. Econ. Rev. 95 (2005), 372-375.
[36] M. Niederle, A.E. Roth, Market Culture: How Rules Governing Exploding O¤ers A¤ect

Market Performance, American Economic Journal: Microeconomics, 1 (2009), 199-219.
[37] M. Ostrovsky, M. Schwarz, Information Disclosure and Unraveling in Matching Markets,

American Economic Journal: Microeconomics, 2 (2010), 34-63.
[38] A.E. Roth, The Economist as Engineer: Game Theory, Experimental Economics and

Computation as Tools of Design Economics, Econometrica 70 (2002), 1341-1378.
[39] A.E. Roth, What have we learned from market design?, Econ. J. 118 (2008), 285-310.
[40] A.E. Roth, M. Sotomayor, Two-Sided Matching, Cambridge Univ. Press, Cambridge,

UK, 1990.
[41] A.E. Roth, X. Xing, Jumping the Gun: Imperfections and Institutions Related to the

Timing of Market Transactions, Amer. Econ. Rev. 84 (1994), 992-1044.
[42] L. Shapley, M. Shubik, The Assignment Game I: The Core, Int. J. Game Theory 1

(1971), 111-130.
[43] W. Suen, A Competitive Theory of Equilibrium and Disequilibrium Unravelling in

Two-Sided Matching, RAND J. Econ. 31 (2000), 101-120.

52


