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ABSTRACT Genome-wide association (GWA) studies typically lack power to detect genotypes significantly associated with complex
diseases, where different causal mutations of small effect may be present across cases. A common, tractable approach for identifying
genomic elements associated with complex traits is to evaluate combinations of variants in known pathways or gene sets with shared
biological function. Such gene-set analyses require the computation of gene-level P-values or gene scores; these gene scores are also useful
when generating hypotheses for experimental validation. However, commonly used methods for generating GWA gene scores are
computationally inefficient, biased by gene length, imprecise, or have low true positive rate (TPR) at low false positive rates (FPR), leading
to erroneous hypotheses for functional validation. Here we introduce a new method, PEGASUS, for analytically calculating gene scores.
PEGASUS produces gene scores with as much as 10 orders of magnitude higher numerical precision than competing methods. In
simulation, PEGASUS outperforms existing methods, achieving up to 30% higher TPR when the FPR is fixed at 1%. We use gene scores
from PEGASUS as input to HotNet2 to identify networks of interacting genes associated with multiple complex diseases and traits; this is
the first application of HotNet2 to common variation. In ulcerative colitis and waist-hip ratio, we discover networks that include genes
previously associated with these phenotypes, as well as novel candidate genes. In contrast, existing methods fail to identify these networks.
We also identify networks for attention-deficit/hyperactivity disorder, in which GWA studies have yet to identify any significant SNPs.
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ENOME-WIDE association (GWA) studies and meta-

analyses are widely used to identify susceptibility loci
for complex diseases and traits, which are phenotypes gen-
erated by multiple mutations of moderate to small effect
(Hirschhorn and Daly 2005; McCarthy et al. 2008; Daly
2010; Jiang et al 2012; Evangelou and loannidis 2013;
Nalls et al. 2014; Skibola et al. 2014; Woo et al. 2014; Buch
et al. 2015; Kouri et al. 2015; Litchfield et al. 2015; Renton
et al. 2015; Hallberg et al. 2016). To date, >2400 GWA studies
have been conducted to find causal variants that are statistically
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associated with a disease or trait (http://www.ebi.ac.uk/
gwas/). The GWA framework tests the hypothesis that indi-
vidual mutations of large effect generate phenotypes of inter-
est. However, this framework has multiple limitations when
applied to complex diseases. First, complex diseases are known
to exhibit genetic heterogeneity on multiple levels: (i) The
disease may be generated by multiple mutations within an
associated gene and (ii) mutations in distinct genes within a
pathway may interact and produce the disease state (McClellan
and King 2010). In both cases, separately testing individual
variants for statistical associations with a phenotype may not
identify susceptibility loci (McClellan and King 2010; Stranger
et al. 2011). Further, SNP-level GWA results are unlikely to re-
veal complex disease mechanisms, given that different combi-
nations of functionally related variants in genes and pathways
may interact to produce the phenotype of interest.

Gene-set analyses, which test for the statistical association
of phenotype state with a set of genes, are commonly used to
address these limitations of the GWA framework (see Wang
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et al. 2010, Leiserson et al. 2013, and Mooney et al. 2014 for
reviews). To increase computational efficiency and limit the
number of hypotheses tested, it is necessary to reduce the
combinations of variants examined to a tractable number. This
is typically done using databases of known pathways or other
biological interactions, nearly all of which are annotated at the
gene level. Thus, a crucial step in most gene-set analyses is
combining SNP-level GWA P-values within genes into a “gene
score” (Mooney et al. 2014). Here we use “gene-set analysis” to
describe three types of statistical tests for association at the
gene level with a phenotype of interest. First, we describe
permutation tests (e.g., DAPPLE and dmGWAS) (Jia et al.
2011; Rossin et al. 2011) where P-values are assigned to gene
scores observed in an annotated pathway. Second, we describe
tests for enrichment in related annotations among genes in a
predetermined list (e.g., GRAIL, MAGENTA, DAVID, and
GSEA-SNP) (Huang et al 2007, Holden et al 2008;
Raychaudhuri et al. 2009; Segreé et al. 2010). To conduct these
tests, the investigator must compute a gene score and, in some
cases, determine a threshold for extreme gene scores to gen-
erate a list of genes associated with the phenotype of interest.
In the third type of test, once a gene score is computed, the
investigator can conduct a gene-level association test and/or a
gene-network association test, to identify novel combinations
of variants that generate a phenotype of interest, due to un-
known interactions between genes or uncharacterized cross-
talk between pathways.

An informative gene score is a necessary ingredient for
accurate gene-set analyses, but all commonly used methods
for generating gene scores have substantial drawbacks. Com-
monly used methods include choosing the best SNP P-value
within a gene to be the gene score, which is sometimes referred
to as “minSNP” (Torkamani et al. 2008; Fehringer et al. 2012;
Gelernter et al. 2015; Hu et al. 2015); permutation-based
methods such as permSNP (Wang et al. 2007; Eleftherohorinou
et al. 2009; Ballard et al. 2010; Christoforou et al. 2014;
Evangelou et al. 2014; Backes et al. 2016); regression-based
methods such as the sequence kernel association test (SKAT)
family of tests (Wu et al. 2010, 2011) and stratified LD score
regression (Finucane et al. 2015); and VEGAS (Liu et al.
2010) and RAREMETALS (Liu et al. 2013), which correct
for linkage disequilibrium (LD) between SNPs, using simula-
tions from a multivariate normal distribution whose variance
is the empirical LD observed among SNPs within each gene
being analyzed. Multiple methods exist that use the same null
distribution as VEGAS (Tzeng and Zhang 2007; Pan 2009).
Other methods that have been proposed include Fisher’s
combination test (where the gene score must be calculated
empirically using permutation tests), Simes’ combination
test, and Sidak’s combination test (Ballard et al. 2010; Peng
et al. 2010; Wojcik et al. 2015).

The limitations of these approaches range from biased
results to computational inefficiency to imprecision (Table 1).
minSNP is heavily biased by gene length; the longer the gene
is, the more likely it is to have a low gene score. permSNP
permutes case—control labels within a genotype data set to
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calculate an empirical P-value for every gene, which becomes
computationally intractable for large data sets (Liu et al. 2010).
Further, permSNP and SKAT require gaining access to geno-
type data to perform permutations and regression, respectively.
The VEGAS method is more computationally efficient than
other permutation methods (e.g., permSNP requires recomput-
ing GWA P-values for each permuted data set) and requires
only GWA SNP-level P-values as input, but both permSNP and
VEGAS give gene scores whose numerical precision depends
on the number of permutations and simulations, respectively,
that are performed. The smallest gene score VEGAS reports by
default is 107° and for permSNP, it is the reciprocal of the
number of permutations performed per gene (Table 1).

Here we propose a new method—the precise, efficient gene
association score using SNPs (PEGASUS)—to calculate gene
scores analytically from a null chi-square distribution that cap-
tures LD between SNPs in a gene and addresses the shortcom-
ings of existing methods. PEGASUS requires only GWA study
summary statistics and a suitable reference population for LD
calculations as input and thus can be applied to GWA study
meta-analyses performed on summary statistics, pooled DNA
sequencing GWA studies, family-based GWA studies, transmis-
sion disequilibrium test (TDT) results, and also traditional
GWA studies where consent guidelines prohibit release of ge-
notype data. PEGASUS gene scores are correlated with statis-
tics like VEGAS (Tzeng and Zhang 2007; Pan 2009; Liu et al.
2010), which rely on the same null distributions to calculate
gene scores. These methods use different approximations for
the distribution of the sum of correlated chi-square statistics, in
contrast to the more accurate numerical integration of the null
distribution implemented in PEGASUS. We apply our method
to publicly available GWA data sets for nine common diseases
and three quantitative traits from the Psychiatric Genomics
Consortium (PGC) (Neale et al. 2010; Ripke et al. 2011,
2013; Sklar et al. 2011), the International IBD Genetics Con-
sortium (IIBDGC) (Franke et al. 2010; Anderson et al. 2011),
the Genetic Investigation of Anthropometric Traits (GIANT)
Consortium (Heid et al 2010; Lango Allen et al. 2010;
Speliotes et al. 2010), the Broad Institute (Stahl et al. 2010),
the Diabetes Genetics Replication and Meta-analysis (DIAGRAM)
Consortium (Morris et al. 2012), and Xu et al. (2013) (Table 2).
These data sets were chosen because the full set of SNP-level
P-values from the GWA study were available for public down-
load. We compare our method to gene scores generated
by minSNP, permSNP, SKAT, and VEGAS, using real and sim-
ulated GWA data. Finally, we use our gene scores as input in
pathway analysis with HotNet2 (Leiserson et al. 2015), thereby
conducting the first application of HotNet2 to common genetic
variation and identifying gene networks harboring several
variants associated with three phenotypes: attention-deficit/
hyperactivity disorder, ulcerative colitis, and waist-hip ratio.
For these three phenotypes of interest, HotNet2 using VEGAS
gene scores recovered fewer significant subnetworks for
attention-deficit/hyperactivity disorder, ulcerative colitis, and
waist-hip ratio. Neither VEGAS nor PEGASUS yielded signifi-
cant subnetworks for the other nine traits studied here.



Table 1 Summary of minSNP, permSNP, SKAT, and VEGAS gene score methods and limitations

Gene score

method How it works Limitations

minSNP The gene score for each gene is the smallest SNP P-value  Biased by gene length (longer genes have lower
observed within that gene in a GWA study. gene scores).

permSNP Permutes case—control labels within a genotype data set, Requires access to genotype data; very
recomputes GWA SNP P-values using a permuted data computationally costly for genome-wide data sets;
set, and calculates an empirical gene P-value based on numerical precision of gene scores is bounded by
the number of times the observed average SNP P-value the number of permutations performed.
is lower than the permuted P-values

SKAT Uses multiple linear/logistic mixed-model regression of Requires access to genotype data.
covariates (such as principal components to control for
population stratification) and genotypes for variants in
a gene set onto disease state.

VEGAS Uses simulations from a multivariate normal distribution ~ Numerical precision of gene scores is bounded by the

to correct for LD between SNPs. The variance of the
distribution is the empirical LD observed among SNPs

within each gene in the data set.

number of simulations performed; computationally
inefficient due to simulations.

Materials and Methods

Data sets analyzed from genome-wide
association studies

Methods for computing gene scores require a full list of GWA
SNP-level P-values; these can be computed from genotype data
obtained from previously published GWA studies. We were
able to obtain complete results from previous GWA studies for
nine common diseases and three quantitative traits (Table 2).
See Supplemental Material, Table S3 for URLs to download
GWA P-values from the studies referenced in Table 2.

Gene scores

We compared PEGASUS to four existing methods for gener-
ating gene-based scores from GWA SNP-level P-values:
(i) minSNP (Torkamani et al. 2008; Fehringer et al. 2012;
Gelernter et al. 2015; Hu et al. 2015), (ii) permSNP (Wang
et al. 2007; Eleftherohorinou et al. 2009; Ballard et al. 2010;
Christoforou et al. 2014; Evangelou et al. 2014; Backes et al.
2016), (iii) SKAT (Wu et al. 2010, 2011), and (iv) VEGAS
(Liu et al. 2010). For n markers in a given gene, these meth-
ods use different strategies, each detailed below and summa-
rized in Figure 1, to combine P-values p; ...p, within the
gene and calculate a gene-level P-value. We refer to this
gene-level P-value as the gene score or p,.

minSNP: The minSNP method (Torkamani et al. 2008;
Fehringer et al. 2012; Gelernter et al. 2015; Hu et al. 2015)
for generating gene scores assigns the smallest GWA SNP-level
P-value in a given gene to be the gene score (Equation 1):

pg:min@Lvan-an)- (1)

permSNP: The permSNP method (Wang et al. 2007;
Eleftherohorinou et al. 2009; Ballard et al. 2010; Christo-
Forou et al. 2014; Evangelou et al. 2014; Backes et al.
2016) produces gene scores by permuting phenotype labels
across all genotyped individuals to generate an empirical

P-value for every gene. We carried out permSNP only on
the acute lymphoblastic leukemia (ALL) data set (Xu et al.
2013), as genotype data are required for this method, and we
did not have genotype data for the other traits analyzed here.
We calculated permSNP gene scores only for the top 400 most
significant genes determined by minSNP using set-based test
analysis in PLINK due to computational constraints (Purcell
et al. 2007) (see File S1, Algorithm S1 for more details.)

The following settings were used to calculate permSNP
gene scores in PLINK (Purcell et al. 2007): --set-r2 1, --set-p 1,
--set-max 99999, --maf 0.01, and --mperm 10,000 permuta-
tions of case—control labels. With these command flags,
PLINK first does an association test between phenotype state
and allele dosage at each SNP. Second, for every gene, the
SNP test statistics (q1,q2, .. .,qn) within the gene are aver-
aged to calculate the observed gene-level test statistic Qgps
(File S1, Algorithm S1). Third, the phenotype labels are per-
muted M times and the previous two steps are repeated for
the permuted data each time, resulting in SNP statistics using
the permuted phenotype data and corresponding gene statis-
tics Q*. The gene score p, is then the fraction of times the
gene statistic Q* is greater than the observed statistic Qqps
over the M permutations (File S1, Algorithm S1).

SKAT (Wu et al. 2010, 2011): This method uses multiple
linear/logistic mixed-model regression of covariates and ge-
notypes for variants in a gene set, along with covariates, onto
disease state. Covariates can include sex, age, or top principal
components of genotype data to control for population strat-
ification. Under the multiple logistic regression model for a
continuous phenotype, the relationship between variant ge-
notypes G; and the phenotype y; for the ith individual (of p
total individuals) is given by Equation 2, where ay is an in-
tercept term, C; is a vector of covariates, « is the vector of
regression coefficients for m covariates, B is the vector of
regression coefficients for the n SNPs in a gene, and ¢; is an
error term that is normally distributed with mean of zero and
variance o2. Given this model, SKAT tests the null hypothesis
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Table 2 Total numbers of cases and controls and number of SNP loci in GWA studies for the 12 phenotypes studied here

Disease or trait (reference) No. cases No. controls No. SNPs
Attention-deficit/hyperactivity disorder (ADHD) (Neale et al. 2010) 864 + 2,064 trios 2,455 1,206,461
Acute lymphoblastic leukemia (ALL) (Xu et al. 2013) 1,593 6,661 709,059
Bipolar disorder (BIP) (Sklar et al. 2011) 7,481 9,250 2,427,220
Body mass index (BMI) (Speliotes et al. 2010) NA 123,865 2,471,516
Crohn'’s disease (CD) (Franke et al. 2010) 6,333 15,056 953,241
Height (Lango Allen et al. 2010) NA 183,727 2,469,635
Major depressive disorder (MDD) (Ripke et al. 2013) 9,240 9,519 1,235,109
Rheumatoid arthritis (RA) (Stahl et al. 2010) 5,539 20,169 2,556,271
Schizophrenia (SCZ) (Ripke et al. 2011) 9,394 12,462 1,252,901
Type 2 diabetes (T2D) (Morris et al. 2012) 12,171 56,862 2,473,441
Ulcerative colitis (UC) (Anderson et al. 2011) 6,687 19,718 1,428,749
Waist-hip ratio adjusted for BMI (WHR) (Heid et al. 2010) NA 77,167 2,483,325

Ho: B = 0. Assuming that each g; for the jth variant follows
some distribution with mean 0 and variance wjr, where 7is a
variance component and wj is a weight for variant j, the null
hypothesis can be restated as Hyp: 7 = 0. The variance com-
ponent score statistic for this test is given by Equation 3,
where K is a pXp matrix with ky =Y ,wjG;Gij, the
weighted genetic similarity between two subjects i and i’ in
the region with n markers, and . = g + Ca. Wu et al
(2011) suggest setting the weights ,/w; = Beta(MAFj; 1, 25),
the beta distribution density function with parameters a; = 1
and a; = 25 evaluated at the sample minor-allele frequency
(MAF) for a given variant j. The SKAT test statistic follows a
mixture of chi-square distributions that can be evaluated
using numerical integration to obtain a P-value for the
gene (Wu et al. 2010, 2011):

Yi=ap+a'Ci+ PG+ 2)
Q= (y—n)K(y — ). (€))

Because full genotype data are required for this method, we
applied SKAT only on the ALL data set (Xu et al. 2013) and the
Wellcome Trust Case Control Consortium (WTCCC) type 2 di-
abetes data set (WTCCC 2007). We used the top four princi-
pal components from principal components analysis (PCA)
on these data sets as covariates in the regression and hold
these covariates constant across all methods tested in this
study (Wu et al. 2010, 2011; Peloso et al. 2014). The follow-
ing settings were used to calculate SKAT scores in R, using the
R package SKAT (Lee et al. 2015): (a) in the R function
SKAT Null Model, out_type = “D” and Adjustment = “F”
and (b) in the R function SKATBinary.SSD.All, method =
“SKAT”. These settings specify a linear weighted kernel with
the weights ,/w; = Beta(MAFj; 1,25).

VEGAS (Liu et al. 2010): Consider a gene with n SNPs. Un-
der the null hypothesis of no association, a gene can be rep-
resented by an n-element multivariate normal vector with
mean 0 and variance ), the n X n pairwise LD matrix. Given
this model, VEGAS generates gene scores by (i) performing
10® multivariate normal simulations from the null distribu-
tion of LD-correlated SNPs, (ii) squaring the simulated values
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and summing to get a null test statistic for each gene, and (iii)
calculating an empirical gene-level P-value based on the pro-
portion of times the observed test statistic is smaller than the
simulated null statistics across all simulations (Liu et al.
2010).

PEGASUS: The main innovation in PEGASUS is using an
analytical approach to compute gene-level P-values of ob-
served gene scores according to a null distribution modeling
LD (Figure 1D). Consider a gene (defined as the gene bound-
aries =50 kb to include regulatory regions; the buffer of 50 kb
can be varied) with n SNPs. Suppose the P-values for SNPs
within the gene boundaries are {pi,ps,...,pn} Let
x; = F71(p;), where F~! is the inverse of the cumulative dis-
tribution function (CDF) x3,_,. At the gene level, we are
interested in the observed value g, defined as the sum of
the correlated Xgl.f.:l variables within a gene (Equation 4):

q=> x @
i=1

Our model for q is as follows: Let X = {X7,Xo,...,X,} be
an n-element multivariate normal vector with mean pw =0
and positive definite covariance matrix ), where ) is
the LD between SNP i and SNP j and ), =1. The
quadratic form in the random variables X7, X5, . .., X, associ-
ated with an nXn symmetric matrix A= (a;) is de-
fined as Q(X) = Q(X1,Xz, ..., Xn) = X'AX =31 J'»l:lag,-Xl-Xj
(Mathai and Provost 1992). The quadratic form
Q(X) = X'AX has the following representation (Equation 5),
where N\ are the eigenvalues of > A and U are mutu-
ally independent standard normal variables (Mathai and
Provost 1992):

QX) =Y AUE. ©)
i=1

Q = > ,X? follows the same distribution as Equation 5, and
so the characteristic function of Q(X) can be inverted to find
the CDF of the null distribution accounting for empirical LD,
which can be numerically integrated at the observed value
(@) to find the gene-level P-value (p,), Prob(Q > q) (Mathai



Figure 1 Schematic representa-
tions of PEGASUS and the three
other methods—minSNP, permSNP,
and VEGAS—assessed in this
. study. (A) minSNP defines the
gene score to be the lowest of
® the SNP-level P-values within the
gene observed in a GWA study.
(B) permSNP (Ballard et al. 2010)
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and Provost 1992). The numerical integration is imple-
mented in the R package CompQuadForm (Duchesne and
Lafaye De Micheaux 2010). The LD (covariance) matrix
Y is calculated using the --r flag (correlation) in PLINK
(Purcell et al. 2007). In contrast, VEGAS (Liu et al. 2010)
draws samples from the multivariate normal distribution
with variance equal to the LD matrix, which are then summed
to obtain an approximation of the P-value. Software to run
PEGASUS is available at https://github.com/ramachandran-
lab/PEGASUS. Empirical LD can be calculated using the
1000 Genomes Phase 3 data set (Auton et al. 2015) (release
date: November 2014) as references. These data contain
2426 individuals in five superpopulations: East Asians, Euro-
peans, Africans, South Asians, and admixed Americans.

Connection between SKAT and PEGASUS tests: As shown in
Text S1, the SKAT and PEGASUS null distributions are

P sum of Correlated X; Statistics

observed y? statistic is lower than
M the permuted x? statistic. (D) In
PEGASUS, for each gene, we nu-
merically integrate the distribution
of the sum of correlated x? statis-

statistic Null tics at the observed gene statistic
\A Distribution to determine the gene score. We
modeling also assess the performance of

AEEEAITE empirical LD SKAT (Wu et al 2010, 2011),

which is not depicted here. SKAT
uses a multiple linear/logistic re-
gression framework, where geno-
types for variants in a gene set and
covariates are regressed onto phe-
notype to generate gene scores.

mixtures of chi-square distributions. Mixture proportions
for the SKAT null distribution are the eigenvalues of the
matrix o2[(I— P)K], where P = C(CTC) 'C" is a projection
matrix dependent on the covariate matrix C and K = GWG’
is a kernel matrix dependent on the genotype matrix G and a
diagonal matrix of weights W. For the PEGASUS null distri-
bution, mixture proportions are given by the eigenvalues of
the LD matrix > . If no covariates are considered and the
variant weights are uniform (w; = 1) for all variants, the
SKAT null distribution becomes a mixture of chi-square dis-
tributions with mixture proportions given by the eigenvalues
of the K = GWG’' matrix, which is a variance-covariance
matrix similar to the PEGASUS LD matrix » . Thus, under
these circumstances, the two tests give similar results. How-
ever, PEGASUS requires only summary statistics and is a
better choice when genotype data are not available for
analysis.
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GWA study replication

To further assess the robustness of our method, PEGASUS,
we attempted to replicate gene hits (ps <2.8X107° or
0.05 divided by approximately 18,000 genes tested) gener-
ated by PEGASUS for four data sets [bipolar disorder (BIP),
Crohn’s disease (CD), rheumatoid arthritis (RA), and type 2 di-
abetes (T2D)], using genotype data from the WTCCC (WTCCC
2007). For the replication study, we carried out PEGASUS on
these four WTCCC data sets (our “replication cohort”) and
compared the top genes found in our “discovery” data sets
(Franke et al. 2010; Stahl et al. 2010; Sklar et al. 2011;
Morris et al. 2012) to those found in the WTCCC data sets.
We note that this is not an independent replication study since
the WTCCC data sets were included in the discovery cohorts;
cases from the WTCCC data sets comprised at most 38% of the
cases included in the discovery cohorts (Table S2). The repli-
cation data sets consist of ~2000 cases for each disease and
~3000 shared controls recruited from the United Kingdom and
genotyped on the Affymetrix 500K GeneChip (WTCCC 2007).

Eight quality control steps were carried out for each of
the four WTCCC data sets. Steps 1-7 were carried out
using PLINK (Purcell et al. 2007) (version 1.07):

1. Markers with minor allele frequency <1% were removed.

2. Loci with a call rate =95% across individuals were
removed.

3. Individuals with at least 5% missingness across all loci
were removed.

4. Loci not in Hardy-Weinberg equilibrium were removed
(P-value threshold of 107°).

5. Individuals were pruned based on inbreeding coefficient
(F=0.05 or F= —0.025).

6. Duplicate individuals were removed (one individual for
each pair with identity by state = 95%).

7. Related individuals were removed (one individual for
each pair with 7> 0.0175).

8. Individuals determined to be outliers by principal com-
ponent analysis were removed. SmartPCA from the
EIGENSOFT (Price et al. 2006) software package (version
4.0.2) was used to do PCA with outlier removal. Five iter-
ations of outlier removal were performed with the outlier
o threshold = 6.

We conducted GWA analysis using PLINK (Purcell et al.
2007) (version 1.07) on the WTCCC data sets. SNP-level
P-values were determined by logistic regression of disease
state onto minor allele dosage, using the top four principal
components as covariates in the logistic regression to control
for ancestry.

GWA study simulation

To compare how well minSNP, SKAT, VEGAS, and PEGASUS
can recover causal genes, we conducted a GWA study for a
simulated complex phenotype with known genetic architec-
ture based on the approach outlined in Wojcik et al. (2015)
and applied these four methods to the simulated data (Figure
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S13). To choose causal genes, we picked four pathways
with >20 genes each at random from the KEGG pathway
database (Kanehisa 1997; Kanehisa et al. 2012). For each
pathway, we randomly sampled 20% of its genes, resulting
in 54 total causal genes. We ran Tagger (Haploview, Version
4.3) (Barrett et al. 2005) on each gene to find independent
tag SNPs (2 < 0.2), using the WTCCC controls (N = 2900 in-
dividuals) as reference individuals to calculate LD. For each
of the 54 causal genes, we chose 1, 2, or 5 tag SNPs to be
associated with the phenotype, giving 123 total causal SNPs.
All the chosen SNPs in each gene were randomly assigned an
effect size of either 1.2 or 2 to simulate a range of effect sizes.

Using software from Wojcik et al. (2015), we then calcu-
lated a per-individual liability score for each individual
(WTCCC controls served as our simulated cases and controls)
from a model of additive genetic effects by summing the
effect size s of each SNP multiplied by the minor allele dos-
age X at the SNP over all n SNPs (Equation 6). A “wiggle” (¢)
was added to each raw liability score (Equation 7) to allow
the cases and controls to overlap in their liability score
distributions:

123 total causal SNPs
raw liability score = Z siXi (6)
i=1

wiggled score = raw liability score + e,
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where € ~ N(0.1,10).
Phenotype was assigned to each individual based on the mean
of 100 deviates from the binomial distribution with probability
of success equal to the probability of the wiggled score from
the logistic distribution, which we obtained by applying the
logistic function to the wiggled score.

We then conducted GWA analysis using PLINK (Purcell
et al. 2007) (version 1.07) on the WTCCC controls and the
simulated phenotypes. SNP-level P-values were determined
by logistic regression of minor allele dosage onto disease
state. We used the top four principal components, deter-
mined by applying smartPCA (Price et al. 2006) to the geno-
types, as covariates in the logistic regression to control for
ancestry. To simulate spurious associations between SNPs
and our associated phenotype, we added 20% of significant
SNP P-values (144 new SNPs total) from an existing GWA
study on CD (Franke et al. 2010) to our simulated GWA
P-values; these spuriously associated SNPs did not overlap
with SNPs already associated with simulated phenotype. By
“spuriously associated” SNPs, we mean SNPs that achieve
genome-wide significance (P-value < 5X107%) but are
not discussed or selected for replication studies, eQTL anal-
ysis, or other downstream analyses due to filtering steps.
Such SNPs may be excluded based on criteria such as failure
to achieve significance within a majority of the individual
cohorts analyzed in a meta-analysis (Anderson et al. 2011),
location within regions with complex LD or complex associ-
ation patterns with the trait such as the MHC or TNFAIP3
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regions for RA (Stahl et al. 2010), or P-value thresholds based
on additional in silico analyses such as GRAIL (Raychaudhuri
et al. 2009; Franke et al. 2010). Since the true causal genes
underlying the simulated phenotype a