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Temporal Memory of Interfood Interval Distributions
with the Same Mean and Variance

Russell M. Church and Donna M. Lacourse
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The time of occurrence of reinforced lever responses of rats depends on the char-
acteristics of the distribution of times from food to the next available food. Two
groups of 10 rats were trained, in counterbalanced order, on two variable-interval
schedules of reinforcement that were equated for the mean, standard deviation, and
range of the intervals from food to the next available food, but which differed in
shape. The differences in the shape of the interfood interval distributions resulted
in differences in the distribution of interfood intervals, of postreinforcement pauses,
the function relating response rate to time since food, and the power spectra of times
of response. Quantitative timing models, such as scalar timing theory and a multiple-
oscillator model, differ in their assumptions about the nature of the internal clock
and the representation of time in memory. The multiple-oscillator model and scalar
timing theory accounted for different features of the data.  2001 Academic Press
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An animal searching for food must decide where to go and when to go
there. This involves movement in both space and time. A temporal search
task is one in which the spatial aspects of the task are held constant but the
temporal aspects are varied. For example, food may always be found in a
single location but at various times. The problem for the animal is when to
search for food in that location.

Any time-based schedule of reinforcement involving a single operant re-
sponse may be defined as a temporal search task. Such a food schedule may
be characterized as a distribution of intervals between the time that food
occurs and the time that the next food is available. The first response after
food is made available results in food delivery.
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At one extreme of predictability, each food may be made available at a
fixed interval after the previous food delivery, so that an animal with the
ability to time perfectly would be able to predict exactly the time of availabil-
ity of the next food. Behavior under conditions of fixed-interval responding
has been studied extensively, and timing theories are able to account for
many of the characteristics of performance (Church & Broadbent, 1990; Gib-
bon & Church, 1984; Killeen & Fetterman, 1988).

At the other extreme of predictability, each food can be made available
at a random interval after the previous food delivery. In a random-interval
schedule of reinforcement, food is made available after a random exponential
waiting time with some mean. In this schedule, the conditional probability
of food becoming available is independent of the time since the last food
delivery, so that an animal with the ability to time perfectly would have no
ability to predict the time of occurrence of the next food availability. Of
course, a time sense would still be useful for making estimates of the mean
time from food until the next food is made available, which could be reflected
in the mean response rate. The mean response rate has been found to be well
described as a decreasing hyperbolic function of the mean interval between
the delivery of food and the next available food (Herrnstein, 1970). In the
remainder of this article, ‘‘food’’ refers to the time of food delivery and
‘‘prime’’ refers to the time of food availability. These are the scheduled
and actual times of reinforcement, respectively. The sequence of food–prime
intervals is the scheduled reinforcement series, and the sequence of food–
food intervals is the actual reinforcement series.

Performance is markedly affected by characteristics of the distribution of
food to prime intervals, such as the mean and variance. The mean time of
starting to respond on a fixed-interval schedule of reinforcement is propor-
tional to the interval from food to prime; the standard deviation of the start
times is also proportional to this interval; thus, the coefficient of variation
(the standard deviation divided by the mean) is relatively constant (Church,
Meck, & Gibbon, 1994; Gibbon, 1977). The mean time of starting to respond
also depends on the variability of the food–prime interval (Brunner, Fair-
hurst, Stolovitzky, & Gibbon, 1997; Church, Lacourse, & Crystal, 1998).
The observation that animals respond sooner after reinforcement if the time
to the next reinforcement is more variable may be related to the preference
for variable over fixed times of reinforcement (for example, Davison, 1969;
Gibbon, Church, Fairhurst, & Kacelnik, 1988).

There is also some evidence that performance may be affected by the
shape of the distribution, independently of its mean and variance. Although
there are many differences in the performance of rats on fixed versus variable
schedules of reinforcement, the effects of different distributions of the vari-
able interval are less certain. Comparisons have been made between uniform
and exponential distributions of intervals with the same mean (Catania &
Reynolds, 1968). Other comparisons have been made between forward and
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backward Exponential distributions (Brunner, Fairhurst, Stolovitszky, &
Gibbon, 1997; Gibbon, Church, Fairhurst, & Kacelnik, 1988). Conclusions
from these data are qualified by the small effects often observed and by the
difficulty of isolating, with these particular pairs of distributions, the shape
of the distribution from other factors such as the range of possible times.

The present experiment is concerned with the determinants of responding
under conditions in which the scheduled distributions of food–prime inter-
vals have the same mean, variance, and range, but different distribution
forms. Thus, if the behavior of the animal were determined by the mean
interval, the global predictability of the interval, or by the extreme values,
the behavior under the two schedules of reinforcement would be the same.
But if the behavior of the rats is affected by the form of the distribution,
then the behavior may not be determined by such simple summary measures
as a measure of central tendency, a measure of variability, or a percentile.
An effect of the difference in distribution forms alone would suggest that
the behavior was determined by the local predictability of the occurrence of
food. The empirical purpose of the present experiments was to determine
how temporal search performance differs in an environment in which food
occurs over the same range of possible times with a fixed mean time (60 s)
and a fixed standard deviation (60 s), but with differing distribution forms.

In one condition, food was made available at time determined by an Expo-
nential distribution (a random waiting-time distribution) with a mean and
standard deviation of 1 min. In the other condition, food was made available
at times determined by a Wald (inverse Gaussian) distribution with a mean
and standard deviation of 1 min. The forms of these distributions are shown
in Fig. 1 (see Evans, Hastings, & Peacock, 1993). The top panel shows the
probability density functions (with areas of 1.0); the middle panel shows the
distribution functions, the probability of food being available by any given
time after the previous food; and the bottom panel shows the hazard func-
tions, the conditional probability of food being made available at any particu-
lar time following the delivery of food. Although the two distributions were
equated for overall mean and standard deviation, they differed with respect
to local predictability of the time of occurrence of food availability.

The theoretical purpose of the experiment was to determine the extent to
which timing theories can account for any observed differences in the re-
sponse patterns. Quantitative timing models, such as scalar timing theory
(Gibbon, Church, & Meck, 1984) and a multiple-oscillator, connectionist
model (Church & Broadbent, 1990), differ in their assumptions about the
perceptual representation of time, temporal memory, and the basis for deci-
sions about time. The perceptual representation of time in scalar timing
theory is a single pacemaker that sends pulses to an accumulator; in the
multiple-oscillator model, a set of oscillators’ half-phases serve as the per-
ceptual representation of time. The memory representation used in scalar
timing theory is a distribution of transformed accumulator values (an exem-
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FIG. 1 Exponential and Wald distributions, each with a mean and standard deviation of
60 s. The top panel shows the density functions, the middle panel shows distribution functions,
and the bottom panels shows the hazard functions.

plar memory); the memory representation in the multiple-oscillator model
is a linear combination of autoassociation matrices of perceived times (a
prototype memory). The decision process in scalar timing theory consists of
a comparison of a random sample of a single value from a temporal memory
distribution to the current value in the accumulator; the decision process in
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the multiple-oscillator model consists of a comparison of the current percep-
tual representation with the entire temporal memory matrix. On the basis
of data currently available, it is not possible to determine which of these
fundamentally different sets of assumptions about temporal perception,
memory, and decision is more likely to provide the basis for the development
of a quantitative theory of timing that will fit many different descriptive
measures of behavior obtained in many different procedures (Church, 1997a,
1997b).

METHOD

Animals

Twenty experimentally naive male albino Sprague–Dawley viral anti-
body-free rats (Charles River Breeding Laboratory, Kingston, NY) were
used. They were 49 days old on arrival and housed in individual cages. After
1 week of ad lib food and water, they were fed 15 g/day. Water was continu-
ously available both in the home cages and in the operant boxes in the testing
room. The colony room was on a 12:12 light:dark cycle. During the dark
phase (from 8:45 AM until 8:45 PM), dim red lights illuminated the colony
room, and dim red lights were present at all times in the testing room. Ses-
sions began about 9 AM and 11:15 AM each day.

Apparatus

Ten identical operant boxes (23 3 30 3 30 cm) were equipped with a
lever (Med Associates ENV-112BX, 4.8 3 1.9 cm wide and 6 cm above
the floor) 3.5 cm to the left of a food reservoir (5 3 5 3 2 cm). A pellet
dispenser (Med Associates ENV-203) delivered 45-mg Noyes (Improved
Formula A) pellets into the food cup. A panel opposite the lever and food
cup had a water bottle mounted outside the box. Each box was in a ventilated,
sound-attenuating chamber (74 3 38 3 60 cm high). Two Gateway 486
DX2/66 computers running Med-PC Medstate Notation Version 2.0 con-
trolled experimental events and recorded the time at which each event and
lever press occurred with 10-ms resolution.

Procedure

Pretraining began when the rats were 109 days old. It consisted of three
sessions in which each lever press was followed by a food pellet. A session
ended when the rat made 60 responses or after 60 min, whichever came first.
The number of rats that made 60 responses in 60 min on Sessions 1, 2, and
3 was 8, 13, and 19, respectively. (The remaining rat was given a fourth
session of training and made 60 responses on that session.)

The rats were randomly divided into two groups of 10 rats each. In Phase
I (Sessions 1–30) the Exponential distribution was used for the determination
of times of food availability for one group and the Wald distribution was
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used for the other group. In Phase 2 (Sessions 31–60) these conditions were
reversed. The daily sessions were two hours in length and began at 9:30 AM
and 11:45 AM. The session began with the onset of the houselight and the
insertion of the lever into the box.

The Exponential density function is f(t) 5 (1/b) e2t/b, where t is the time
from 0 to infinity and b is the mean (top panel of Fig. 1). The Exponential
distribution function is F(t) 5 1 2 e(2t/b) (middle panel of Fig. 1). The equa-
tion that was used for selecting random values from this distribution was t
5 2 b ln(r), where r is a uniform random number between 0 and 1. A
distinctive feature of the Exponential distribution is its constant hazard func-
tion at the level of 1/b (bottom panel of Fig. 1). The mean parameter, b,
was set to 60 s. The Exponential distribution may arise from a process in
which the probability of an event is a constant (Luce, 1986).

The Wald density function is also defined from t 5 0 to infinity; it has
two parameters representing central tendency and variability; the mean and
standard deviation were set to 60 s. A table of 1000 times (to the nearest
0.1 s) was prepared, corresponding to probabilities of 0.001, 0.002, . . . ,
0.999 of the Wald distribution function. These times varied from 4.8 to 501.3
s. Random values from the Wald distribution functions were obtained by
using a uniform random number between 0.001 and 0.999 (multiplied by
1000) as an index to this table of times that was sampled with replacement.
The Wald distribution may arise from a random walk with one absorbing
barrier (Luce, 1986). Unlike the Exponential distribution, the hazard function
for the Wald distribution is not constant. The hazard function rises quickly
to around 30 s and then falls gradually, so that there is local predictability.

At the beginning of the session, and following each delivery of food, a
randomly selected time from the appropriate distribution was determined as
the time for the next food to be primed. This food was delivered immediately
following the first lever press after the prime. Lever presses before the prime
were recorded, but had no effects.

Data Analysis

A record was made of the times of each experimenter-controlled event
(such as priming food, delivering food, and turning on a light) and each rat-
controlled event (such as pressing or releasing the lever and licking the water
bottle). The time-event codes that were analyzed in this report are the times
of each lever response, priming of food, and delivery of food. The four major
dependent variables were (a) the distribution of food–food intervals, (b) the
distribution of intervals from food to next response (the postreinforcement
pauses), (c) the response rate as a function of time since food, and (d) the
power spectrum of response times based on 10-ms intervals for each 2-h
session. If a response occurred in a 0.01-s interval, a ‘‘1’’ was recorded;
otherwise a ‘‘0’’ was recorded. Power spectra were calculated with this se-
quence. Power spectra were also calculated on a transformation of this se-
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quence that was previously used by Broadbent (1994). A half-fill transform
was used to fill the time between successive responses: The first half of the
interval between successive 1s was replaced by 11s in each 0.01-s unit of
time and the second half was replaced by 21s in each 0.01-s unit of time.
The power spectra were calculated using the Matlab power spectral density
(psd) function, with a length of 16,384 intervals (214) and linear detrending,
but no filtering and no overlap. Maxima and minima of these functions were
identified as the maxima and minima of a 16th-order polynomial, which pro-
vided a smooth approximation of the spectrum.

Results for the food–food and food–prime distributions are based on all
30 sessions under each condition; results for the postreinforcement pause,
the response rate, and the spectral analysis are based on the last 10 sessions
under each condition. Medians were used to combine measures across ses-
sions of a given rat; means were used to combine measures across rats.

RESULTS

The distribution of food–prime (scheduled) intervals in the Exponential
and Wald conditions are shown in Fig. 2; they approximate the form of the
theoretical density functions shown in the top panel of Fig. 1. The distribu-
tions of the food–food intervals received by the rats in the Exponential and
Wald conditions are shown by the data points in Fig. 2. In both the Exponen-
tial and Wald conditions there was a rightward shift in the food–food times
compared to the food–prime—this is wasted time. The shift was fairly uni-
form in the Wald, but there was some evident bias in the Exponential condi-
tion. There was an overabundance of food deliveries at about 5 and 26 s.

Figure 3 shows the mean probability of the occurrence of the first response
after food as a function of time since food. The mean time of the first re-
sponse after food occurred earlier in the Exponential than in the Wald condi-
tion during Sessions 21–30 (5.44 and 11.67 s), t(18) 5 7.9, P , .001. This
difference was also observed after the conditions were reversed during Ses-
sions 51–60, (5.67 and 10.98 s), t(18) 5 4.9, P , .001. The standard devia-
tion of the first response after food was lower in the Exponential than in the
Wald condition during Sessions 21–30 (4.44 and 10.74 s), t(18) 5 8.6, P
, .001. This difference was also observed after the conditions were reversed
during Sessions 51–60 (4.71 and 9.70 s), t(18) 5 4.8, P , .001.

The mean probability of a response as a function of time since food is
shown in Fig. 4 for rats in the Exponential and Wald conditions. In the Expo-
nential condition, there was a rapid rise followed by a decrease to a fairly
steady rate; in the Wald condition, there was a more gradual rise and then
a decrease to a relatively steady rate that was at a level similar to that of the
Exponential. The time of the maximum response rate occurred earlier in the
Exponential than in the Wald condition, both during Sessions 21–30, t(18)
5 3.6, P , .001, and after the conditions were reversed during Sessions 51–
60, t(18) 5 3.8, P , .001.
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FIG. 2 The mean probability of food becoming available (the food–prime interval) and
of food being delivered (the food–food interval) as a function of time since food delivery.
The left panels shows the distributions for the Exponential condition, and the right panels
show the distribution for the Wald condition.

The power spectrum for one rat in the Exponential Condition on Sessions
51–60 is shown in Fig. 5. A standard power spectrum analysis is reported
for the data in the top left panel of Fig. 5. The power simply decreases as
a function of frequency without any indication of maximum power at some
intermediate frequency. This is contrasted with the power of an exponential
waiting time distribution with the same mean interresponse interval as the
observed data (labeled ‘‘random’’ in the top left panel of Fig. 5).

The top right panel of Fig. 5 shows a power spectrum analysis of the same
data with the half-filled transformation (see ‘‘Data Analysis’’). With this
transformation the power does increase to a maximum at some intermediate
frequency. This occurs both with the data and with an exponential waiting
time distribution with the same mean interresponse interval as the observed
data, although the locations of the maxima are different.

The bottom panels replot this information as a difference between the data
and the simulation (labeled ‘‘Data—Random’’). This difference between the
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FIG. 3 The mean probability that the first response after food occurs in each 1-s interval
since food. The last 10 sessions of the first and second phases are shown for the Exponential
and Wald distributions.

power spectrum of the data and of the exponential waiting time with the same
mean interresponse interval as the observed data is referred to as ‘‘Relative
Power.’’ Without a transformation, the relative power was high at low fre-
quencies and decreased at higher frequencies. With the half-filled transfor-
mation, the shape of the relative power was quite different. There was a
maximum near a frequency of 0.014 Hz and a minimum near a frequency
of 0.048 Hz.
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FIG. 4 The mean probability of a response in each 1-s interval since food. The last 10
sessions of the first and second phases are shown for Exponential and Wald distributions.

The general response pattern of the rat in Fig. 5 was characteristic of the
mean relative power spectra of rats with the Exponential and Wald distribu-
tion during Sessions 51–60, as shown in Fig. 6. Without a transformation,
the relative power decreased with frequency; with the half-fill transforma-
tion, the relative power had a maximum and, perhaps, also a minimum. There
was a maximum near a frequency of 0.015 Hz and a minimum near a fre-
quency of 0.121 Hz in the Exponential condition and a minimum near a
frequency of 0.027 and 0.078 Hz in the Wald condition.
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FIG. 5 Power spectra for the interresponse intervals for one rat in the Exponential condi-
tion during the last 10 sessions of the second phase. The top left panel shows the power
spectrum of the data for a sample with an exponential waiting time distribution with the same
mean. Bottom left panels show the relative power (the difference between the two functions in
the top panel). The panels on the right are the same analyses based on the half-filled transform.

DISCUSSION

Previous research described in the introduction has shown that temporal
search depends on the mean, standard deviation, and range of the distribution
of times between an event and the availability of the next food. The present
experiment provides further evidence that the behavior of rats is also influ-
enced by the distribution form, even when mean and standard deviation are
held constant. The two distribution functions used in this experiment (center
panel of Fig. 1) appear to be quite similar, but differences between them are
emphasized by the density (top panel) and hazard functions (bottom panel).
For example, the Exponential density function is higher than the Wald den-
sity function in the first 10 s and lower from 11 to 55 s (top panel of Fig.
1). These differences were sufficient to produce substantial differences in
the behavior of the rats as shown by the distribution of food–food intervals
(Fig. 2), distribution of times of postreinforcement pauses (Fig. 3), and the
response rate as a function time since food (Fig. 4).

The distribution of food–food intervals in the Wald condition appeared
to be displaced by a few seconds to the right of the distribution of food–prime
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FIG. 6 The mean relative power as a function of response frequency (in hertz). The left
panels are without a transformation, and the right panels are with the half-filled transform;
the top panels are for the Exponential condition and the bottom panels are for the Wald condi-
tion. Data from Sessions 51–60.

intervals. This is consistent with a short interval between the availability of
food and the response required to deliver the food. In contrast, the Exponen-
tial condition was not simply a rightward displacement of the distribution
of times from food to prime (Fig. 2). Compared to the scheduled food–prime
interval, the actual food–food interval was initially low, with two distinct
maxima (at about 5 and 26 s). This result, previously reported for the Expo-
nential distribution (Broadbent, 1994) and for the Uniform distribution of
intervals with a minimum of 0 s but not of 30 s (Church, Lacourse, & Crystal,
1998), provides evidence for a nonmonotonic process initiated by food. The
initial low probability of a lever response after food presumably reflects com-
petition with the consummatory act of eating the food; the first maximum
may represent the increased responding due to the increasing probability of
a reinforcement following a period without responding. Such a process could
lead to a damped oscillation in which two local maxima are clearly evident.
This process would occur whenever the reinforcement density is high imme-
diately after food (as in the Exponential distribution and the Uniform distri-
bution with a minimum of zero) and not under conditions in which the rein-
forcement density is low immediately after food (as in the Wald distribution
and the Uniform distribution with a minimum of 30 s).
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The postreinforcement pause may represent, in part, a reaction to the food
presentation: Some fixed time might be required for consumption of the food
followed by other activities, such as grooming or drinking. But this does not
account for the large differences in the postreinforcement pause of rats in
the Exponential and Wald conditions (Fig. 3). The pause was shorter in the
Exponential than in the Wald condition presumably because the reinforce-
ment density was initially higher shortly after reinforcement.

The response rate as a function of time since food provided a rough corre-
spondence to the density, distribution, and hazard functions of the two condi-
tions. The response rate was initially higher in the Exponential condition,
then higher in the Wald condition, and finally about equal in the two condi-
tions (Fig. 4).

The spectral density functions, however, did not discriminate between the
two conditions. Without the transform, the relative power decreased as a
function of frequency. With a half-fill transform the spectral density func-
tions had at least one clear maximum, as reported by Broadbent (1994). The
location of the maximum of these spectral functions does not serve as a
measure of a dominant period because they are affected by the mean response
rate and a maximum also occurs with a random input.

Theories of timing that have been developed to account for performance
on fixed intervals may be directly extended to apply to variable intervals.
Each of the theories may be characterized by assumptions about the percep-
tion of a time interval, the memory about a time of reinforcement, and a
decision about whether to respond (Church & Kirkpatrick, 2000).

According to scalar timing theory (Gibbon & Church, 1984; Gibbon,
Church, & Meck, 1984), a single pacemaker sends pulses to an accumulator
which is the perceived time since reinforcement. When reinforcement occurs,
the perceived time, perhaps transformed, is stored as an example in reference
memory; the accumulator is reset; and a random example from reference
memory is retrieved. At each small unit of time, the perceived time is com-
pared to the retrieved memory according to a ratio comparison. If that ratio
is smaller than a threshold that is sampled from a normal distribution of
possible threshold values, a response will be made.

According to a multiple-oscillator model of timing (Church & Broadbent,
1990), the perceived time since reinforcement is the vector of half-phases
of 11 oscillators with d periods of 1, 2, 4, 8, . . . , 1024 s. When reinforcement
occurs, the perceived time is sent to an autoassociation matrix (working
memory) that is combined with the remembered time in the reference mem-
ory matrix according to a linear combination rule and the oscillators are reset.
At each small unit of time, the perceived time is compared to the product
of the perceived time and reference memory, and, if the cosine is small rela-
tive to a threshold, a response will be made.

Simulation of the multiple-oscillator model was based on the version de-
scribed by Church and Broadbent (1990), with a coefficient of variation of
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FIG. 7 Simulation of the mean probability of next food becoming available (the food–
prime interval) and of food being delivered (the food–food interval) as a function of time
since last food delivery. The left panels shows the distributions for the Exponential condition
and the right panels show the distribution for the Wald condition. The top panels are from
the multiple-oscillator model; the bottom panels are from the scalar timing theory. (Compare
to results shown in Fig. 2.)

the pacemaker (the ratio of the standard deviation to the mean) of 0.25, a
threshold of 0.4, and a standard deviation of the threshold of 0.1. Simulation
of scalar timing theory was based on the version described by Gibbon,
Church, and Meck (1984), with a coefficient of variation of the pacemaker
(the ratio of the standard deviation to the mean) of 0.20, a threshold of 0.5,
and a standard deviation of the threshold of 0.1. Other values of the three
parameters may result in improved fits of some of the functions, but typically
an improvement in the fit of one the functions was accompanied by a decre-
ment in the fit of another function. The simulations of the two models were
based on 10 120-min sessions under the 60-s Exponential and Wald distribu-
tions used in the experiment.

The food–food interval distributions produced by the multiple-oscillator
model (top panels of Fig. 7) were similar in overall form to those observed
in the data (Fig. 2). The time of the simulated maximum probability of a
food–food interval, however, was higher than that observed and the over-
abundance of food deliveries at about 5 and 26 s did not emerge, although
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FIG. 8 Simulation of the mean probability of the first response after food in each 1-s
interval since food delivery for the Exponential and Wald conditions. The top panel is from
the multiple-oscillator model; the bottom panel is from the scalar timing model. (Compare to
results shown in Fig. 3.)

the asymptotic performance of the multiple-oscillator model leads to local
irregularities (Church, Lacourse, & Crystal, 1998; Crystal, Church, & Broad-
bent, 1997). The overall form of the food–food interval distribution produced
by the scalar timing model approximated the data less closely.

With the multiple-oscillator model, the distributions of the postreinforce-
ment pauses in the Exponential and Wald conditions were different: The
postreinforcement pauses of the rats in the Exponential condition were earlier
(Fig. 8), as was observed in the data (Fig. 3). The simulated mean postrein-
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forcement pause was greater than the observed pause, so the correspondence
was qualitative rather than quantitative. With the scalar timing model the
distributions of the postreinforcement pauses in the Exponential and Wald
conditions were similar, although they would presumably not be identical
because more short interfood intervals would be in memory in the Exponen-
tial condition than in the Wald condition.

With the multiple-oscillator model, the mean response rate increased more
rapidly in the Exponential condition than the Wald condition and then de-
creased to an asymptote that was similar to the rat data (Fig. 9). These fea-

FIG. 9 Simulation of the mean probability of a response in each 1-s interval since food
delivery for the Exponential and Wald conditions. The top panel is from the multiple-oscillator
model; the bottom panel is from scalar timing theory. (Compare to results shown in Fig. 4.)
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FIG. 10 Simulation with multiple-oscillator model of the relative power as a function of
response rate for the Exponential (top panels) and Wald conditions (bottom panels) with the
untransformed data (left panels) and the half-filled transformed data (right panels). (Compare
to results shown in Fig. 6.)

tures were observed in the data (Fig. 4). With the scalar timing model, the
response rate functions in the two conditions were similar and the shape was
different from that observed in the data.

The spectral power produced by the multiple-oscillator model is shown
in Fig. 10. These results may be compared to those shown in Fig. 6. In
contrast to the data, the simulated relative power of the untransformed data
in both the Exponential and the Wald conditions increased to a maximum
and then decreased to approximately zero (Fig. 10, left panels). The relative
power of the transformed data in both the Exponential and Wald conditions
increased to a maximum, decreased below zero, and then returned to approxi-
mately zero (Fig. 10, right panels). Thus, the multiple-oscillator model pro-
duced a qualitative fit to the power spectra of the transformed data, but it
failed to produce a qualitative fit to the power spectra of the untransformed
data.

The spectral power produced by the scalar timing model is shown in Fig.
11. These results may be compared to those shown in Fig. 6. The relative
power of the untransformed data in both the Exponential and the Wald condi-
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FIG. 11 Simulation with scalar timing model of the relative power as a function of re-
sponse rate for the Exponential (top panels) and Wald conditions (bottom panels) with the
untransformed data (left panels) and the half-filled transformed data (right panels). (Compare
to results shown in Fig. 6.)

tion was high at low frequencies and gradually decreased to approximately
zero (Fig. 11, left panels). The relative power of the transformed data in both
the Exponential and Wald conditions was high at low frequencies, gradually
decreased below zero, and then returned to approximately zero (Fig. 10, right
panels). Thus, the scalar timing theory produced a qualitative fit to the power
spectra of the untransformed data, but it failed to provide a qualitative fit to
the power spectra of the transformed data.

Although theories of timing have been relatively successful in dealing
with procedures involving fixed intervals, they have had more difficulty in
accounting for behavior in procedures involving variable intervals. The mul-
tiple-oscillator model has been used to provide qualitative fits to the behavior
of rats in random interval schedules of reinforcement (Broadbent, 1994) and
to uniform schedules of reinforcement (Church, Lacourse, & Crystal, 1998).
In the present experiment it also provided qualitative fits to many, although
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not all, of the response measures examined. Probably the most essential fea-
ture of this model is its assumption that animals retrieve a representation of
the entire distribution of experienced times of reinforcement from memory.
In contrast, the usual assumption in scalar timing theory is that animals re-
trieve a single example of a previously experienced time of reinforcement
from memory.

Scalar timing theory did not provide qualitative fits to most of the response
measures examined. It is possible that the standard version of the theory
that applies to fixed intervals does not apply to variable intervals (Brunner,
Fairhurst, Stolovitzky, & Gibbon, 1997). The proposal is that, in a fixed
interval schedule, the animal takes a single random sample from memory of
a reinforced time, but in a variable interval schedule, the animal takes two
samples. One of these is taken from an early percentile and is used for starting
a high response rate; the other is taken from a later percentile and is used
for ending that high response rate. This modification increases the effect of
different distribution shapes. Of course, it is necessary to specify the condi-
tions under which the animal uses the one-sample and two-sample versions
of the theory.

Ideally, the same theory of timing would apply to different procedures and
to different response measures. If different models are required for different
procedures, then the model must include an additional process that permits
the animal to classify procedures. If different models are required for differ-
ent ways to describe a time series of responses, then it is necessary to recog-
nize that they are models of specific dependent variables rather than models
of the generating function.

At present, no theory of timing provides a quantitative fit of multiple re-
sponse measures from different variable interval schedules. Further modifi-
cations of timing theories will be necessary to account for the various de-
scriptions of behavior of rats in an environment in which food is available
at variable intervals. The fact that the form of the distribution of interfood
intervals affects performance means that a timing theory must be based on
more than a few summary measures of a distribution of intervals.
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