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Abstract

In this work, we investigate unsupervised representation learning on medical time
series, which bears the promise of leveraging copious amounts of existing unlabeled
data in order to eventually assist clinical decision making. By evaluating on the
prediction of clinically relevant outcomes, we show that in a practical setting,
unsupervised representation learning can offer clear performance benefits over end-
to-end supervised architectures. We experiment with using sequence-to-sequence
(Seq2Seq) models in two different ways, as an autoencoder and as a forecaster, and
show that the best performance is achieved by a forecasting Seq2Seq model with
an integrated attention mechanism, proposed here for the first time in the setting of
unsupervised learning for medical time series.

1 Introduction
Patient representation learning is one of the popular topics in the field of machine learning for
healthcare. The generality of supervised representations is usually constrained by the amount of
labeled data, while unsupervised representations can leverage information from all data, labeled or
not. Hence, unsupervised learning can produce representations of general utility [1–4], which can be
useful in case downstream tasks are not known a priori.

Conditions like the ones described above are especially true in the medical domain. Routine medical
practice generates a wealth of patient-related time series, while data annotation often requires medical
experts, whose time is very limited. Additionally, new tasks of interest emerge, and different hospitals
or health systems often define tasks in different ways. Thus, generally useful representations,
providing good performance over a broad range of downstream tasks, are highly desired.

In this work, we investigate unsupervised representation learning on medical time series, which
remains relatively unexplored. We propose adapted and novel models well suited for this objective
and elucidate under which conditions they provide a performance benefit over end-to-end supervised
learning with respect to predicting clinically relevant outcomes.

2 Related Work
The unsupervised learning approaches studied in this paper are rooted in the autoencoding princi-
ple [5]. The basic autoencoding architecture has been extended in several ways, such as denois-
ing [6], variational [7], convolutional [8], or contractive [9] autoencoders. Sequence-to-sequence
(Seq2Seq) [10] architectures have been used successfully in translation [11], and on text and im-
ages [12, 13]. Seq2Seq models have also been pre-trained in an unsupervised way [14] and fine-tuned
with labeled data.

Several models for unsupervised representation learning have been successfully employed in medical
applications [4, 15–18]. While in many cases representations were obtained with both descriptive as
well as predictive utility, the optimal reconstruction principles and loss functions leading to accurate
clinical outcome prediction have not been widely studied.
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Attention mechanisms can improve performance and interpretability and have enjoyed wide use across
domains [19–22]. Although attention has been used in the context of unsupervised representation
learning of natural language [23], attention architectures in the medical domain have been so far
exclusively focused on predicting specific supervised tasks.

3 Representation Learning Models
3.1 Baselines: Autoencoders

Autoencoding consists of two steps: encoding maps the input data space Rd to an representation
space Rm, where typically m < d, while decoding maps in the reverse direction to reconstruct the
data from representations. The objective of autoencoding is to minimize the reconstruction error
between the input data and the reconstructions.

Non-Sequential models Principal Component analysis (PCA) and its inverse together can be
considered as a simple autoencoding process, where the encoding is a learned linear projection. An
autoencoder (AE) is a neural network composed of an encoder and a decoder, each implemented as
a multi-layer perceptron; it encodes the data in a non-linear way. Our goal is to encode temporal
sequences of physiological signal vectors, but the inherent architecture of PCA and AE does not
allow them to exploit the temporal structure in time series. To make data compatible with the input
format of PCA and AE, we flatten a (T, d)-dimensional time series (i.e. T time samples, each of d
dimensions) into a (Td)-dimensional vector.

Seq2Seq model While Seq2Seq models are often used in supervised training settings in natu-
ral language processing [10, 11, 14], we use it in an unsupervised way by minimizing the input
reconstruction error as an objective; we refer to such a model as a S2S-AE. Figure 1 shows the
structure of a S2S-AE model. A Long Short-Term Memory (LSTM) cell is used for both encoder and
decoder recurrent neural network (RNN) units, because it can retain information over more time-steps
compared to simple RNN cells [24, 25].

At time t, the encoder receives a sequence of signal vectorsXt := {xτ}tτ=t−T+1 from a time window
of size T as input and produces a representation et := ht, where ht is the last hidden state of the
encoder. The decoder, given et, outputs a sequence of reconstructions {x̂τ}tτ=t−T+1 for the same
window. Let fθ and gφ denote the encoder and decoder respectively, with parameters θ and φ. Then
the S2S-AE model can be formulated like

fθ(xt−T+1,xt−T+2, . . . ,xt) = et, gφ(et) = x̂t−T+1, x̂t−T+2, . . . , x̂t, (1)

L(Xt) =
1

T

∑T−1

τ=0
‖xt−τ − x̂t−τ‖2, L =

1

N

∑N

i=1

1

Li

∑Li−1

k=0
L(XT+k), (2)

where L(Xt) is the average reconstruction error for one window of a single patient’s input signals
from t− T + 1 until the current time t. The loss for patient i is then the average error over their Li
windows, indexed by k, sliding with stride 1. To train the S2S-AE model we average the patient-wise
loss over all N patients. The representation et from a S2S-AE model summarizes a fixed length of
the medical history of a patient up to time T , which reflects the current state of the patient.

3.2 Sequential forecasting model (S2S-F)

We hypothesize that the requirement to forecast future time points in the patient’s signal would force
the encoding LSTM to extract meaningful representations of the past time series. For this purpose,
we design another Seq2Seq-based variant, S2S-F (“F” for forecasting), where the decoder predicts
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Figure 1: Sequence-to-sequence autoencoder (S2S-AE). T is the length of history the we want to encode in the
representations. If we want to encode the patient’s history from admission to time t, then T = t.
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Figure 2: Sequence-to-Sequence Forecaster with Attention (S2S-F-A).

the future time series instead of reconstructing the past time series in the input. In this way, the
representations still reflect the current patient state but are also optimized to predict the future patient
state. We modify (1) and (2) to get the decoder function and the loss function for S2S-F:

g′φ(et) = x̂t+1, x̂t+2, . . . , x̂t+T , L′(Xt) = (1/T )
∑T

τ=1
‖xt+τ − x̂t+τ‖2.

3.3 Forecasting with attention (S2S-F-A)

The idea behind applying attention mechanisms to time series forecasting is to enable the decoder
to preferentially “attend” to specific parts of the input sequence during decoding. This allows for
particularly relevant events (e.g. drastic changes in heart rate), to contribute more to the generation
of different points in the output sequence. Since autoencoding with attention is trivial (an effective
attention mechanism would learn to only point to the corresponding input at each time point), we only
augment S2S-F with the attention mechanism, calling the architecture S2S-F-A (shown in Figure 2).

Formally, at time τ ∈ {t+1, . . . , t+T} during decoding, the objective is to produce a context vector
cτ which is a weighted combination of the hidden states hj of the decoder: cτ =

∑T
j=1 ατjhj . The

weights ατj are softmax-normalized versions of weights γτj computed by the attention mechanism
F , which considers both the current state of the decoder h′τ and each state of the encoder hj in
turn: γτj = F (h′τ ,hj) and ατj = exp(γτj)/

∑
i exp(γτi). To implement F , we use a single-

layer perceptron with a tanh activation function and scalar output, following [26]: F (h′τ ,hj) =
βT tanh(Wdh

′
τ +Wehj).

Each ατj reflects the importance of time point j in the input sequence for decoding time point τ in
the output. The context vector cτ is thus an explicit resummarization of the input data in light of the
current decoding task. The context vector is concatenated to the usual input fed to the decoder at
τ + 1, which is x̂τ (see Figure 2).

The attention mechanism breaks the "bottleneck" principle of usual Seq2Seq models, and it is not
obvious how to choose a self-contained representation. Following our practice for S2S-AE and S2S-F,
we take the final state of the encoder, ht as the representation. Although we experimented with
additionally including context vectors as part of the representation, an interesting finding was that
simply taking ht was sufficient in the prediction of downstream tasks. Table A2 summarizes the
characteristics of the unsupervised representation models we analyze.

4 Experiments and results
Data The eICU Collaborative Research Database v1.2 [27] was used for all experiments described
in this paper. 94 time series variables including periodic and aperiodic vital signs and irregularly
measured lab tests were extracted. The data was resampled to be hourly, with implausible data
rejection and imputation performed online; see Appendix A.1 for more details. Overall, the dataset
consists of 20,878 patients with 72-720 hours of history, extending from ICU admission to dispatch.
We use a window size of 12 hours (i.e. 12 time points) and representation dimension 94.

Reconstructing past and predicting future We aim to evaluate the ability of representations
to reconstruct past and future data. Some representations are obtained from models optimized to
reconstruct past data (PCA, AE and S2S-AE), while others from models optimized to predict future
data (S2S-F and S2S-F-A). To produce a fair comparison independent of a specific decoder, we use
the representations themselves as input features to a 1-layer LSTM trained to either reconstruct the
past 12 hours, or predict the next 12. The performance for each set of representations are shown in
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Table 1, evaluated using mean-squared error (MSE). Not surprisingly, representations from forecaster
models perform better in future prediction and the attention mechanism further improves performance.
However, the extent to which attention helps is surprising.

Table 1: Performance of representations used as input features to a 1-layer LSTM trained to either reconstruct
the past 12 hours, or predict the next 12 hours. (The best results are in bold and second are best marked with *)

MSE PCA AE S2S-AE S2S-F S2S-F-A

Reconstruction 0.0743 ± 0.002 0.0403 ± 0.001 0.0505 ± 0.001 0.0500 ± 0.001 0.0474 ± 0.003∗

Prediction 0.149 ± 0.003 0.114 ± 0.002∗ 0.121 ± 0.003 0.119 ± 0.003 0.0982 ± 0.003

Predicting mortality and discharge status within the next 24 hours Besides evaluating the
ability of representations in past/future signal prediction, we are also interested in whether we can
use them to predict future clinical events. Here we focus on predicting whether patients will be
discharged from the ICU in a stable state (“24h Discharge”), or die within the next 24 hours (“24h
Mortality”). We trained 1-layer LSTM classifiers (LSTM-1) using representations as input to predict
these two events and report the area under ROC curve (AUROC) and the area under precision-recall
curve (AUPRC) in Table 2. In addition, we also include the performance of a 3-layer LSTM classifier
(LSTM-3), a “deeper” model, trained on the original input signals as a baseline.

Table 2: Prediction of discharge/mortality status within the next 24 hours using unsupervised representations or
raw signals. The prevalence of the discharge and mortality positive labels is 0.197 and 0.021 respectively. (The
best results are in bold and second are best marked with *)

24h Discharge 24h Mortality

AUPRC AUROC AUPRC AUROC

LSTM-1 +

PCA rep. 0.436 ± 0.01 0.811 ± 0.004 0.0975 ± 0.007 0.78 ± 0.007

AE rep. 0.471 ± 0.005 0.824 ± 0.002 0.203 ± 0.01 0.889 ± 0.008∗

S2S-AE rep. 0.474 ± 0.006 0.824 ± 0.003 0.196 ± 0.02 0.887 ± 0.004

S2S-F rep. 0.477 ± 0.006∗ 0.825 ± 0.003∗ 0.193 ± 0.01 0.886 ± 0.005

S2S-F-A rep. 0.48 ± 0.007 0.825 ± 0.003∗ 0.201 ± 0.01∗ 0.89 ± 0.009

LSTM-3 + raw signals 0.438 ± 0.01 0.834 ± 0.002 0.181 ± 0.01 0.89 ± 0.01

Improved performance in limited data setting Here we evaluate how unsupervised representa-
tions help boost prediction performance in the limited labeled data scenario.

We simulate this setting by reducing the quantity of labeled data available for the classification
problems described in the previous section, with as few as 1% (N = 75 patients) training examples.
The results under this varying data scarcity are shown in Figure 3, for the different representation-
learning approaches. We also include the prediction performance of classifiers, namely LSTM-1 and
LSTM-3, trained in an end-to-end supervised fashion on the available labeled data, as baselines.
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Figure 3: 24h discharge and mortality prediction performance of LSTM-1 using unsupervised representations,
as well as supervised learning with LSTM-1 and LSTM-3. (There are only 75 labeled patients for training in the
1% labeled data setting.)

We observe from Figure 3 that when labels are scarce, the model trained using time-series repre-
sentations as input features outperforms the end-to-end supervised model, confirming the benefit of
unsupervised representation learning in limited data settings. Even when we use all labeled samples
at our disposal to train a more complex classifier, the best unsupervised representations still lead to a
better performance than supervised representations. For all models, however, performance does not
saturate when increasing the training set size, which indicates that the entire regime examined here is
the data scarcity regime. Given more data, the purely supervised models might eventually surpass the
ones using learned representations.
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5 Conclusion
We have studied the performance of several methods for learning unsupervised representations of
patient time series, and proposed a new architecture, S2S-F-A, which is optimized for forecasting
using an attention mechanism. We empirically showed that in scenarios where labeled medical time
series data is scarce, training classifiers on unsupervised representations provides performance gains
over end-to-end supervised learning using raw input signals, thus making effective use of information
available in a separate, unlabeled training set. The proposed model, explored for the first time in the
context of unsupervised patient representation learning, produces representations with the highest
performance in future signal prediction and clinical outcome prediction, exceeding several baselines.
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A Appendix

A.1 Data

The eICU Collaborative Research Database v1.2 [27] was used for all experiments described in this paper. 94
time series variables (shown in Table A1) including periodic and aperiodic vital signs and irregularly measured
lab tests were extracted from the raw database. A variable was included in our analysis if at least 10% of patients
in the cohort had at least one record for this variable. As preprocessing, the raw data was resampled to a regular
time-grid format with an interval size of 60 minutes, extending from admission to the ICU to dispatch from
the unit. During computation of the time grid, rejection of implausible data and imputation were performed
with an online algorithm. An observation was rejected if it is a statistical outlier with respect to pre-computed
5th/95th dataset percentiles. Values on the regular time grid were imputed using a combination of forward filling,
personalized history mean filling and population median filling. Forward filling was used if the last value was
recorded no earlier than 1 hour (periodic vital signs), 5 hours (aperiodic vital signs) or 1 day (lab tests) prior to
the grid point, respectively. Otherwise, if there have been previous observations of that variable, the mean of all
such observations was used to fill in the time grid point. If there were no observations in a patient’s history, the
grid value was filled with the population median for that variable.

Overall, the dataset consists of 20878 patients with 72-240 hours of history.

Table A1: List of 94 selected variables.

eICU Table Variables

vitalPeriodic cvp, heartrate, respiration, sao2, st1, st2, st3, systemicdiastolic, systemicmean, systemicsystolic, temperature

vitalAperiodic noninvasivediastolic, noninvasivemean, noninvasivesystolic

Lab -bands, -basos, -eos, -lymphs, -monos, -polys, ALT (SGPT), AST (SGOT), BNP, BUN, Base Deficit, Base Excess,
CPK, CPK-MB, CPK-MB index, Carboxyhemoglobin, Fe, Ferritin, FiO2, HCO3, HDL, Hct, Hgb, LDL, LPM
O2, MCH, MCHC, MCV, MPV, Methemoglobin, O2 Content, O2 Sat (%), PT, PT - INR, PTT, RBC, RDW,
Respiratory Rate, TIBC, TSH, TV, Total CO2, Vancomycin - trough, Vent Rate, Vitamin B12, WBC x 1000,
WBC’s in urine, albumin, alkaline phos., ammonia, anion gap, bedside glucose, bicarbonate, calcium, chloride,
creatinine, direct bilirubin, fibrinogen, glucose, ionized calcium, lactate, lipase, magnesium, pH, paCO2, paO2,
peep, phosphate, platelets x 1000, potassium, sodium, temporature, total bilirubin, total cholesterol, total protein,
triglycerides, troponin - I, troponin - T, urinary sodium, urinary specific gravity

A.1.1 Cohort selection

Among the >200,000 ICU stays available in the dataset, we included only patients with one stay, such that data
splits do not have to be stratified with respect to patient ID. In the second filtering step, ICU stays shorter than 3
days or longer than 10 days were excluded. The filtering yielded a set of 20878 patients/ICU stays.

A.1.2 Data splits

From the pre-filtered dataset we created 5 replicates of random partitions into train, validation and 2 test sets,
with respect to patients, i.e. the entire data of a patient was contained in exactly one of the 4 sets. Size ratios of
40:40:10:10 for train/validation/test1/test2 sets were used. The training set was used to train the representations,
the validation set was used to tune free hyperparameters of the representation method (if any). The classifiers
were trained on the patient representations obtained from the validation set, optimized its hyperparameters on the
representations from the first test set, and its predictive performance was evaluated on the unseen representations
from the second test set. 5 independent experiments have been performed on the replicates.

A.2 Representation learning

For each representation learning method, representations were extracted from the training set. Feature columns
were standard-scaled (subtracting mean / dividing by the standard deviation) before training the models to obtain
representations. The validation set was used to implement an early stopping heuristic for the training process, in
the case of the deep learning models. At this point, all trained representations were saved to disk. For the deep
learning models, we used grid search to find the best set of hyper-parameters.

For basic autoencoders, we train with a mini-batch of 512 randomly sampled records, and for the recurrent
autoencoders we train with a mini-batch of 4 patients with full history. We use early stopping based on the
validation set loss to avoid overfitting, i.e. we stop training if we observe that validation set loss is non-decreasing
for 10 consecutive epochs. We additionally use the validation set to perform hyperparameter optimization over
the optimal learning rate and activation functions.
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A.3 Representation evaluation

For evaluating the future signal and task prediction performance, representations of the first 12 hours of a
patient recording were excluded. In this way the results are not affected by the model-specific ways of handling
incomplete histories, which occur at the beginning of the patient stay.

A.4 Model complexity

Table A2 shows the traits of the unsupervised learning models used in the paper. An advantage of Seq2Seq-based
models is that the number of parameters they use does not depend on the length of the input time series to be
compressed.

Table A2: Comparison of used unsupervised representation learning models. T refers to the length of the time
series to be encoded (12 in our experiments), d is the dimension of the input data, and m is the dimension of the
hidden state of the LSTM in the S2S-based models, which is the same as the representation dimension.

name nonlinear temporal decoder output attention number of parameters

PCA past O(Tmd)

AE X past O(Tmd)

S2S-AE X X past O(m2 +md)

S2S-F X X future O(m2 +md)

S2S-F-A X X future X O(m2 +md)

x

A.5 Impact of representation dimension

In this section we investigate the relationship between the dimensionality of representations and their performance
across tasks. In the previously described experiments, we used a representation dimension of m = 94, implying
a compression factor of 12 (as the windows consist of 12 hourly measurements of 94 variables). Here we vary
the value of m to explore how much compression is possible while retaining prediction performance.

Table A3 shows the AUROC values using S2S-F-A representations for prediction. Compared with the AUROC
scores corresponding to using raw features in Table 2, even the S2S-F-A representations with very low dimension
still obtain reasonable performance.

Table A3: AUROC scores of predictions using LSTM-1 classifiers on S2S-F-A representations with different
dimensions.

AUROC S2S-F-A (m=2) S2S-F-A (m=50) S2S-F-A (m=94)

24h Discharge 0.7985± 0.003 0.8028± 0.004 0.825± 0.003

24h Mortality 0.8398± 0.01 0.8696± 0.006 0.89± 0.009
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